- Notifications
You must be signed in to change notification settings - Fork2
rfjoni/ParticleModel
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
A hybrid machine learning framework for modelling and control of particle processes using on-line/at-line particle analysis and other at-line/on-line process sensors. ParticleModel is implemented in Python, using theTensorFlow framework.
The framework consists of several modules outlined by the following:
- Data module: Data structure for storing time-series data
- Design of experiments module: Module for generating design of experiments
- Domain module: Domain module for discretization of particle distributions
- Reference model module: First principles reference models for testing of framework
- Hybrid model module: Hybrid modelling framework
- Process control module: Process control structures for particle processes
Python > 3.7 is required for this code to work. It is recommended so set up an individual python enviroment for this installation.
The necessary python packages and versions can be found inrequirements.txt.To install all packages in one go, use the following pip-command:
pip install -r requirements.txt- R. F. Nielsen, N. A. Kermani, L. la Cour Freiesleben, K. V. Gernaey, S. S. Mansouri,Novel strategies for predictive particle monitoring and control using advanced image analysis, in: A. A. Kiss, E. Zondervan, R. Lakerveld, L. zkan (Eds.), 29th European Symposium on Computer Aided Process Engineering, volume 46 of Comput. Aided Chem. Eng., Elsevier, 2019, pp. 1435-1440. doi:10.1016/B978-0-12-818634-3.50240-X.
- R. F. Nielsen, N. Nazemzadeh, L. W. Sillesen, M. P. Andersson, K. V.Gernaey, S. S. Mansouri,Hybrid machine learning assisted modelling framework for particle processes, Comput. Chem. Eng., Elsevier, 2020 (accepted)
About
Hybrid machine learning framework for modelling and control of particle processes
Topics
Resources
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Releases
Packages0
Uh oh!
There was an error while loading.Please reload this page.
Contributors2
Uh oh!
There was an error while loading.Please reload this page.