Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

This is a collection of various document parsers and hands-on to construct structured data for your RAG applications.

NotificationsYou must be signed in to change notification settings

renswickd/document-parser-collection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A comprehensive toolkit for extracting and processing content from PDF documents using various parsing technologies.

Overview

This project implements five different document parsing approaches:

  • Unstructured.io API
  • Llama Parse
  • Mistral OCR
  • Azure Document Intelligence
  • Amazon Textract

Parser Comparison

1. Unstructured.io API

Strengths:

  • Excellent at handling complex document layouts
  • Advanced table extraction capabilities
  • Maintains document structure and formatting
  • Supports multiple document formats

Limitations:

  • API rate limits on free tier
  • Higher latency due to cloud processing
  • Cost increases with document volume

Best For:

  • Complex documents with mixed content
  • Documents with tables and structured data
  • Batch processing requirements

2. Llama Parse

Strengths:

  • Strong text extraction capabilities
  • Good handling of simple layouts
  • Local processing option available
  • Efficient for text-heavy documents

Limitations:

  • Limited table extraction capabilities
  • May struggle with complex layouts
  • Requires more computational resources locally

Best For:

  • Text-heavy documents
  • Simple document layouts
  • Local processing requirements

3. Mistral OCR

Strengths:

  • Excellent OCR accuracy
  • Good language support
  • Handles handwritten text well
  • Real-time processing capabilities

Limitations:

  • Limited formatting preservation
  • May struggle with complex tables
  • Higher cost for high-volume processing

Best For:

  • Documents with handwritten content
  • Multi-language documents
  • Real-time OCR requirements

4. Azure Document Intelligence

Strengths:

  • Advanced AI-powered extraction
  • Excellent form field recognition
  • Strong table extraction
  • Built-in pretraining for common documents

Limitations:

  • Azure platform lock-in
  • Higher cost for large-scale processing
  • Requires Azure subscription

Best For:

  • Forms and structured documents
  • Enterprise-scale deployments
  • Integration with Azure services

5. Amazon Textract

Strengths:

  • Excellent table extraction
  • Good form field recognition
  • Scales well for large volumes
  • Strong integration with AWS

Limitations:

  • AWS platform lock-in
  • Cost can be high for large volumes
  • Limited customization options

Best For:

  • AWS ecosystem integration
  • Large-scale document processing
  • Forms and table extraction

🔧 Setup

1. API Keys and Credentials

Unstructured.io

Llama Parse

Mistral API

  • VisitMistral AI
  • Create account and generate API key

Azure Document Intelligence

  • Create resource inAzure Portal
  • Get endpoint URL and API key from resource settings

Amazon Textract

  • Set up AWS account
  • Create IAM user with Textract permissions
  • Get AWS access key and secret

2. Environment Setup

  1. Install Dependencies
python -m venv venvsource venv/bin/activate# For Mac/Linuxpip install -r requirements.txt
  1. Configure Environment VariablesCreate a.env file:
# Unstructured.ioUNSTRUCTURED_API_KEY=your_key# Llama ParseLLAMA_API_KEY=your_key# MistralMISTRAL_API_KEY=your_key# AzureAZURE_ENDPOINT=your_endpointAZURE_API_KEY=your_key# AWSAWS_ACCESS_KEY_ID=your_keyAWS_SECRET_ACCESS_KEY=your_secretAWS_REGION=your_region

Usage Guidelines

Document Type Selection

  1. Simple Text Documents

    • Recommended: Llama Parse or Unstructured.io
    • Alternative: Mistral OCR
  2. Forms and Structured Documents

    • Recommended: Azure Document Intelligence or Amazon Textract
    • Alternative: Unstructured.io
  3. Complex Tables

    • Recommended: Amazon Textract or Azure Document Intelligence
    • Alternative: Unstructured.io
  4. Handwritten Content

    • Recommended: Mistral OCR
    • Alternative: Azure Document Intelligence
  5. Multi-Language Documents

    • Recommended: Mistral OCR or Azure Document Intelligence
    • Alternative: Amazon Textract

Contributing

Contributions are welcome! Please read our contributing guidelines and submit pull requests to our repository.

About

This is a collection of various document parsers and hands-on to construct structured data for your RAG applications.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages


[8]ページ先頭

©2009-2025 Movatter.jp