- Notifications
You must be signed in to change notification settings - Fork937
cuDF - GPU DataFrame Library
License
rapidsai/cudf
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
📢 cuDF can now be used as a no-code-change accelerator for pandas! To learn more, seehere!
cuDF (pronounced "KOO-dee-eff") is a GPU DataFrame libraryfor loading, joining, aggregating, filtering, and otherwisemanipulating data. cuDF leverageslibcudf, ablazing-fast C++/CUDA dataframe library and theApacheArrow columnar format to provide aGPU-accelerated pandas API.
You can importcudf
directly and use it likepandas
:
importcudftips_df=cudf.read_csv("https://github.com/plotly/datasets/raw/master/tips.csv")tips_df["tip_percentage"]=tips_df["tip"]/tips_df["total_bill"]*100# display average tip by dining party sizeprint(tips_df.groupby("size").tip_percentage.mean())
Or, you can use cuDF as a no-code-change accelerator for pandas, usingcudf.pandas
.cudf.pandas
supports 100% of the pandas API, utilizing cuDF forsupported operations and falling back to pandas when needed:
%load_extcudf.pandas# pandas operations now use the GPU!importpandasaspdtips_df=pd.read_csv("https://github.com/plotly/datasets/raw/master/tips.csv")tips_df["tip_percentage"]=tips_df["tip"]/tips_df["total_bill"]*100# display average tip by dining party sizeprint(tips_df.groupby("size").tip_percentage.mean())
- Try cudf.pandas now: Explore
cudf.pandas
on a free GPU enabled instance on Google Colab! - Install: Instructions for installing cuDF and otherRAPIDS libraries.
- cudf (Python) documentation
- libcudf (C++/CUDA) documentation
- RAPIDS Community: Get help, contribute, and collaborate.
See theRAPIDS install page forthe most up-to-date information and commands for installing cuDFand other RAPIDS packages.
- CUDA 11.2+
- NVIDIA driver 450.80.02+
- Volta architecture or better (Compute Capability >=7.0)
cuDF can be installed viapip
from the NVIDIA Python Package Index.Be sure to select the appropriate cuDF package dependingon the major version of CUDA available in your environment:
For CUDA 11.x:
pip install --extra-index-url=https://pypi.nvidia.com cudf-cu11
For CUDA 12.x:
pip install --extra-index-url=https://pypi.nvidia.com cudf-cu12
cuDF can be installed with conda (viaminiforge) from therapidsai
channel:
conda install -c rapidsai -c conda-forge -c nvidia \ cudf=25.04 python=3.12 cuda-version=12.8
We also providenightly Conda packages built from the HEADof our latest development branch.
Note: cuDF is supported only on Linux, and with Python versions 3.10 and later.
See theRAPIDS installation guide for more OS and version info.
See buildinstructions.
Please see ourguide for contributing to cuDF.
About
cuDF - GPU DataFrame Library