Uh oh!
There was an error while loading.Please reload this page.
- Notifications
You must be signed in to change notification settings - Fork1.1k
Portfolio analytics for quants, written in Python
License
ranaroussi/quantstats
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
QuantStats Python library that performs portfolio profiling, allowing quants and portfolio managers to understand their performance better by providing them with in-depth analytics and risk metrics.
quantstats.stats- for calculating various performance metrics, like Sharpe ratio, Win rate, Volatility, etc.quantstats.plots- for visualizing performance, drawdowns, rolling statistics, monthly returns, etc.quantstats.reports- for generating metrics reports, batch plotting, and creating tear sheets that can be saved as an HTML file.
Run probabilistic risk analysis with built-in Monte Carlo simulations:
mc=qs.stats.montecarlo(returns,sims=1000,bust=-0.20,goal=0.50)print(f"Bust probability:{mc.bust_probability:.1%}")print(f"Goal probability:{mc.goal_probability:.1%}")mc.plot()
Full Monte Carlo documentation »
%matplotlibinlineimportquantstatsasqs# extend pandas functionality with metrics, etc.qs.extend_pandas()# fetch the daily returns for a stockstock=qs.utils.download_returns('META')# show sharpe ratioqs.stats.sharpe(stock)# or using extend_pandas() :)stock.sharpe()
Output:
0.7604779884378278qs.plots.snapshot(stock,title='Facebook Performance',show=True)# can also be called via:# stock.plot_snapshot(title='Facebook Performance', show=True)
Output:
You can create 7 different report tearsheets:
qs.reports.metrics(mode='basic|full", ...)- shows basic/full metricsqs.reports.plots(mode='basic|full", ...)- shows basic/full plotsqs.reports.basic(...)- shows basic metrics and plotsqs.reports.full(...)- shows full metrics and plotsqs.reports.html(...)- generates a complete report as html
Let's create an html tearsheet:
# benchmark can be a pandas Series or tickerqs.reports.html(stock,"SPY")
Output will generate something like this:
To view a complete list of available methods, run:
[fforfindir(qs.stats)iff[0]!='_']
['avg_loss','avg_return','avg_win','best','cagr','calmar','common_sense_ratio','comp','compare','compsum','conditional_value_at_risk','consecutive_losses','consecutive_wins','cpc_index','cvar','drawdown_details','expected_return','expected_shortfall','exposure','gain_to_pain_ratio','geometric_mean','ghpr','greeks','implied_volatility','information_ratio','kelly_criterion','kurtosis','max_drawdown','monthly_returns','montecarlo','montecarlo_cagr','montecarlo_drawdown','montecarlo_sharpe','outlier_loss_ratio','outlier_win_ratio','outliers','payoff_ratio','profit_factor','profit_ratio','r2','r_squared','rar','recovery_factor','remove_outliers','risk_of_ruin','risk_return_ratio','rolling_greeks','ror','sharpe','skew','sortino','adjusted_sortino','tail_ratio','to_drawdown_series','ulcer_index','ulcer_performance_index','upi','value_at_risk','var','volatility','win_loss_ratio','win_rate','worst']
[fforfindir(qs.plots)iff[0]!='_']
['daily_returns','distribution','drawdown','drawdowns_periods','earnings','histogram','log_returns','monthly_heatmap','montecarlo','montecarlo_distribution','returns','rolling_beta','rolling_sharpe','rolling_sortino','rolling_volatility','snapshot','yearly_returns']
*** Full documentation coming soon ***
QuantStats analyzesreturn series (daily, weekly, monthly returns), not discrete trade data. This means:
- Win Rate = percentage of periods with positive returns
- Consecutive Wins/Losses = consecutive positive/negative return periods
- Payoff Ratio = average winning period return / average losing period return
- Profit Factor = sum of positive returns / sum of negative returns
These metrics arevalid and useful for:
- Systematic/algorithmic strategies with regular rebalancing
- Analyzing return-series behavior over time
- Comparing strategies on a period-by-period basis
Fordiscretionary traders with multi-day trades, these period-based metrics may differ from trade-level statistics. A single 5-day trade might span 3 positive days and 2 negative days - QuantStats would count these as 3 "wins" and 2 "losses" at the daily level.
This is consistent with how all return-based analytics work (Sharpe ratio, Sortino ratio, drawdown analysis, etc.) - they operate on return periods, not discrete trade entries/exits.
In the meantime, you can get insights as to optional parameters for each method, by using Python'shelp method:
help(qs.stats.conditional_value_at_risk)
Help on function conditional_value_at_risk in module quantstats.stats:conditional_value_at_risk(returns, sigma=1, confidence=0.99) calculates the conditional daily value-at-risk (aka expected shortfall) quantifies the amount of tail risk an investmentInstall usingpip:
$ pip install quantstats --upgrade --no-cache-dir
Install usingconda:
$ conda install -c ranaroussi quantstats
- Python >= 3.10
- pandas >= 1.5.0
- numpy >= 1.24.0
- scipy >= 1.11.0
- matplotlib >= 3.7.0
- seaborn >= 0.13.0
- tabulate >= 0.9.0
- yfinance >= 0.2.40
- plotly >= 5.0.0 (optional, for using
plots.to_plotly())
This is a new library... If you find a bug, pleaseopen an issue.
If you'd like to contribute, a great place to look is theissues marked with help-wanted.
For some reason, I couldn't find a way to tell seaborn not to return themonthly returns heatmap when instructed to save - so even if you save the plot (by passingsavefig={...}) it will still show the plot.
QuantStats is distributed under theApache Software License. See theLICENSE.txt file in the release for details.
Please drop me a note with any feedback you have.
Ran Aroussi
About
Portfolio analytics for quants, written in Python
Topics
Resources
License
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Sponsor this project
Uh oh!
There was an error while loading.Please reload this page.


