Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Google Earth Engine for R

License

NotificationsYou must be signed in to change notification settings

r-spatial/rgee

Repository files navigation


MarkdownifyMarkdownifyMarkdownify
rgee: Google Earth Engine for R

rgee is an R binding package for callingGoogle Earth Engine API from within R.Various functions are implemented to simplify the connection with the R spatial ecosystem.

Open in ColabR build statusProject Status: Active – The project has reached a stable, usablestate and is being activelydeveloped.codecovLicenselifecyclestatusCRANstatusDOI
Buy Me A Coffee

Installation  •Hello World  •How does rgee work?  •Guides  •Contributing  •Citation  •Credits

What is Google Earth Engine?

Google Earth Engine is a cloud-based platform that lets users access a petabyte-scale archive of remote sensing data and run geospatial analysis on Google's infrastructure. Currently, Google offers support only for Python and JavaScript.rgee fills the gapby providing support for R!. Below you will find the comparison between the syntax ofrgee and the two other Google-supported client libraries.

JS (Code Editor) Python R
vardb='CGIAR/SRTM90_V4'varimage=ee.Image(db)print(image.bandNames())#>'elevation'
importeeee.Initialize()db='CGIAR/SRTM90_V4'image=ee.Image(db)image.bandNames().getInfo()#> [u'elevation']
library(rgee)ee_Initialize()db<-'CGIAR/SRTM90_V4'image<-ee$Image(db)image$bandNames()$getInfo()#> [1] "elevation"

Quite similar, isn't it?. However, additional more minor changes should be considered when using Google Earth Engine with R. Please check theconsideration section before you start coding!

Installation

Install from CRAN with:

install.packages("rgee")

Install the development versions from github with

library(remotes)install_github("r-spatial/rgee")

Additionally,rgee depends on thePython packages:numpy andee. To install them, users can follow any of these three methods:

  1. Useee_install (Highly recommended for users with no experience with Python environments)
rgee::ee_install()
  1. Useee_install_set_pyenv (Recommended for users with experience with Python environments)
rgee::ee_install_set_pyenv(py_path="/home/csaybar/.virtualenvs/rgee/bin/python",# Change it for your own Python PATHpy_env="rgee"# Change it for your own Python ENV)

Take into account that the Python PATH you set must have installations of the Earth Engine Python API and numpy. The use ofminiconda/anaconda is mandatory for Windows users, Linux and MacOS users could also use virtualenv. Seereticulate documentation for more details.

Another option, only possible for MacOS and Linux, is just set the Python PATH:

rgee::ee_install_set_pyenv(py_path="/usr/bin/python3",py_env=NULL)

However,rgee::ee_install_upgrade andreticulate::py_install will not work until you set a Python ENV.

  1. Use the Python PATH setting support that offerRstudio v.1.4 >. See thistutorial.

After installPython dependencies (and Restart R!!), you might use the function below for checking the status of rgee.

ee_check()# Check non-R dependencies

Sync rgee with other Python packages

Integratergee withgeemap.

library(reticulate)library(rgee)# 1. Initialize the Python Environmentee_Initialize()# 2. Install geemap in the same Python ENV that use rgeepy_install("geemap")gm<- import("geemap")

Upgrade theearthengine-api

library(rgee)ee_Initialize()ee_install_upgrade()

Package Conventions

  • Allrgee functions have the prefix ee_. Auto-completion is your friend :).
  • Full access to the Earth Engine API with the prefixee$....
  • Authenticate and Initialize the Earth Engine R API withee_Initialize. It is necessary once per session!.
  • rgee is "pipe-friendly"; we re-export %>% but do not require its use.

Hello World

1. Compute the trend of night-time lights (JS version)

Authenticate and Initialize the Earth Engine R API.

library(rgee)ee_Initialize()

Adds a band containing image date as years since 1991.

createTimeBand<-function(img) {year<-ee$Date(img$get('system:time_start'))$get('year')$subtract(1991L)ee$Image(year)$byte()$addBands(img)}

Map the time band creation helper over thenight-time lights collection.

collection<-ee$  ImageCollection('NOAA/DMSP-OLS/NIGHTTIME_LIGHTS')$  select('stable_lights')$  map(createTimeBand)

Compute a linear fit over the series of values at each pixel, visualizing the y-intercept in green, and positive/negative slopes as red/blue.

col_reduce<-collection$reduce(ee$Reducer$linearFit())col_reduce<-col_reduce$addBands(col_reduce$select('scale'))ee_print(col_reduce)

Create an interactive visualization!

Map$setCenter(9.08203,47.39835,3)Map$addLayer(eeObject=col_reduce,visParams=list(bands= c("scale","offset","scale"),min=0,max= c(0.18,20,-0.18)  ),name="stable lights trend")

rgee_01

2. Extract precipitation values

Install and loadtidyverse andsf R packages, and initialize the Earth Engine R API.

library(tidyverse)library(rgee)library(sf)ee_Initialize()

Read thenc shapefile.

nc<- st_read(system.file("shape/nc.shp",package="sf"),quiet=TRUE)

Map each image from 2001 to extract the monthly precipitation (Pr) from theTerraclimate dataset

terraclimate<-ee$ImageCollection("IDAHO_EPSCOR/TERRACLIMATE") %>%ee$ImageCollection$filterDate("2001-01-01","2002-01-01") %>%ee$ImageCollection$map(function(x)x$select("pr")) %>%# Select only precipitation bandsee$ImageCollection$toBands() %>%# from imagecollection to imageee$Image$rename(sprintf("PP_%02d",1:12))# rename the bands of an image

Extract monthly precipitation values from the Terraclimate ImageCollection throughee_extract.ee_extract works similar toraster::extract, you just need to define: the ImageCollection object (x), the geometry (y), and a function to summarize the values (fun).

ee_nc_rain<- ee_extract(x=terraclimate,y=nc["NAME"],sf=FALSE)

Use ggplot2 to generate a beautiful static plot!

ee_nc_rain %>%  pivot_longer(-NAME,names_to="month",values_to="pr") %>%  mutate(month,month=gsub("PP_","",month)) %>%  ggplot(aes(x=month,y=pr,group=NAME,color=pr))+  geom_line(alpha=0.4)+  xlab("Month")+  ylab("Precipitation (mm)")+  theme_minimal()

3. Create an NDVI-animation (JS version)

Install and loadsf, after that, initialize the Earth Engine R API.

library(magick)library(rgee)library(sf)ee_Initialize()

Define the regional bounds of animation frames and a mask to clip the NDVI data by.

mask<- system.file("shp/arequipa.shp",package="rgee") %>%  st_read(quiet=TRUE) %>%  sf_as_ee()region<-mask$geometry()$bounds()

Retrieve the MODIS Terra Vegetation Indices 16-Day Global 1km dataset as anee.ImageCollection and select the NDVI band.

col<-ee$ImageCollection('MODIS/006/MOD13A2')$select('NDVI')

Group images by composite date

col<-col$map(function(img) {doy<-ee$Date(img$get('system:time_start'))$getRelative('day','year')img$set('doy',doy)})distinctDOY<-col$filterDate('2013-01-01','2014-01-01')

Define a filter that identifies which images from the complete collection match the DOY from the distinct DOY collection.

filter<-ee$Filter$equals(leftField='doy',rightField='doy')

Define a join; convert the resulting FeatureCollection to an ImageCollection.

join<-ee$Join$saveAll('doy_matches')joinCol<-ee$ImageCollection(join$apply(distinctDOY,col,filter))

Apply median reduction among matching DOY collections.

comp<-joinCol$map(function(img) {doyCol=ee$ImageCollection$fromImages(img$get('doy_matches')  )doyCol$reduce(ee$Reducer$median())})

Define RGB visualization parameters.

visParams=list(min=0.0,max=9000.0,bands="NDVI_median",palette= c('FFFFFF','CE7E45','DF923D','F1B555','FCD163','99B718','74A901','66A000','529400','3E8601','207401','056201','004C00','023B01','012E01','011D01','011301'  ))

Create RGB visualization images for use as animation frames.

rgbVis<-comp$map(function(img) {  do.call(img$visualize,visParams) %>%ee$Image$clip(mask)})

Define GIF visualization parameters.

gifParams<-list(region=region,dimensions=600,crs='EPSG:3857',framesPerSecond=10)

Get month names

dates_modis_mabbr<-distinctDOY %>%ee_get_date_ic %>%# Get Image Collection dates'[['("time_start") %>%# Select time_start columnlubridate::month() %>%# Get the month component of the datetime'['(month.abb,.)# subset around month abbreviations

Use ee_utils_gif_* functions to render the GIF animation and add some texts.

animation<- ee_utils_gif_creator(rgbVis,gifParams,mode="wb")animation %>%  ee_utils_gif_annotate(text="NDVI: MODIS/006/MOD13A2",size=15,color="white",location="+10+10"  ) %>%  ee_utils_gif_annotate(text=dates_modis_mabbr,size=30,location="+290+350",color="white",font="arial",boxcolor="#000000"  )# -> animation_wtxt# ee_utils_gif_save(animation_wtxt, path = "raster_as_ee.gif")

How does rgee work?

rgee isnot a native Earth Engine API like the Javascript or Python client. Developing an Earth Engine API from scratch would create too much maintenance burden, especially considering that the API is inactive development. So, how is it possible to run Earth Engine using R? the answer isreticulate.reticulate is an R package designed to allow seamless interoperability between R and Python. When an Earth Enginerequest is created in R,reticulate will translate this request into Python and pass it to theEarth Engine Python API, which converts the request to aJSON format. Finally, the request is received by the GEE Platform through a Web REST API. Theresponse will follow the same path in reverse.

workflow

Quick Start User's Guide for rgee

Created by: - EN and POR: Andres Luiz Lima Costahttps://bit.ly/3p1DFm9 - SPA: Antony Barja Ingarucahttps://ambarja.github.io/

Code of Conduct

Please note that thergee project is released with aContributor Code of Conduct. By contributing to this project, you agree to abide by its terms.

Contributing Guide

👍 Thanks for taking the time to contribute! 🎉👍 Please review ourContributing Guide.

Share the love

Thinkrgee is useful? Let others discover it, by telling them in person via Twitter or a blog post.

Usingrgee for a paper you are writing? Consider citing it

citation("rgee")Tocitergeeinpublicationsuse:CAybar,QWu,LBautista,RYaliandA Barja (2020)rgee:AnRpackageforinteractingwithGoogleEarthEngineJournalofOpenSourceSoftwareURLhttps://github.com/r-spatial/rgee/.ABibTeXentryforLaTeXusersis@Article{,title= {rgee:AnRpackageforinteractingwithGoogleEarthEngine},author= {CesarAybarandQuishengWuandLeslyBautistaandRoyYaliandAntonyBarja},journal= {JournalofOpenSourceSoftware},year= {2020},}

Credits

We want to offer aspecial thanks 🙌 👏 toJustin Braaten for his wise and helpful comments in the whole development ofrgee. As well, we would like to mention the following third-party R/Python packages for contributing indirectly to the improvement of rgee:


[8]ページ先頭

©2009-2025 Movatter.jp