Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

High Precision Timing of R Expressions

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
NotificationsYou must be signed in to change notification settings

r-lib/bench

Repository files navigation

CRAN statusR-CMD-checkCodecov test coverage

The goal of bench is to benchmark code, tracking execution time, memoryallocations and garbage collections.

Installation

You can install the release version fromCRAN with:

install.packages("bench")

Or you can install the development version fromGitHub with:

# install.packages("pak")pak::pak("r-lib/bench")

Features

bench::mark() is used to benchmark one or a series of expressions, wefeel it has a number of advantages overalternatives.

  • Always uses the highest precision APIs available for each operatingsystem (often nanoseconds).
  • Tracks memory allocations for each expression.
  • Tracks the number and type of R garbage collections per expressioniteration.
  • Verifies equality of expression results by default, to avoidaccidentally benchmarking inequivalent code.
  • Hasbench::press(), which allows you to easily perform and combinebenchmarks across a large grid of values.
  • Uses adaptive stopping by default, running each expression for a setamount of time rather than for a specific number of iterations.
  • Expressions are run in batches and summary statistics are calculatedafter filtering out iterations with garbage collections. This allowsyou to isolate the performance and effects of garbage collection onrunning time (for more details seeNeal2014).

The times and memory usage are returned as custom objects which havehuman readable formatting for display (e.g. 104ns) and comparisons(e.g. x$mem_alloc > "10MB").

There is also full support for plotting withggplot2 including custom scales andformatting.

Usage

bench::mark()

Benchmarks can be run withbench::mark(), which takes one or moreexpressions to benchmark against each other.

library(bench)set.seed(42)dat<-data.frame(x= runif(10000,1,1000),y= runif(10000,1,1000))

bench::mark() will throw an error if the results are not equivalent,so you don’t accidentally benchmark inequivalent code.

bench::mark(dat[dat$x>500, ],dat[which(dat$x>499), ],  subset(dat,x>500))#> Error: Each result must equal the first result:#> `dat[dat$x > 500, ]` does not equal `dat[which(dat$x > 499), ]`

Results are easy to interpret, with human readable units.

bnch<-bench::mark(dat[dat$x>500, ],dat[which(dat$x>500), ],  subset(dat,x>500))bnch#> # A tibble: 3 × 6#>   expression                     min   median `itr/sec` mem_alloc `gc/sec`#>   <bch:expr>                <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>#> 1 dat[dat$x > 500, ]           151µs    202µs     4994.     377KB     36.8#> 2 dat[which(dat$x > 500), ]    124µs    168µs     6169.     260KB     33.2#> 3 subset(dat, x > 500)         184µs    232µs     3911.     510KB     40.3

By default the summary uses absolute measures, however relative resultscan be obtained by usingrelative = TRUE in your call tobench::mark() or callingsummary(relative = TRUE) on the results.

summary(bnch,relative=TRUE)#> # A tibble: 3 × 6#>   expression                  min median `itr/sec` mem_alloc `gc/sec`#>   <bch:expr>                <dbl>  <dbl>     <dbl>     <dbl>    <dbl>#> 1 dat[dat$x > 500, ]         1.22   1.20      1.28      1.45     1.11#> 2 dat[which(dat$x > 500), ]  1      1         1.58      1        1#> 3 subset(dat, x > 500)       1.48   1.38      1         1.96     1.21

bench::press()

bench::press() is used to run benchmarks against a grid of parameters.Provide setup and benchmarking code as a single unnamed argument thendefine sets of values as named arguments. The full combination of valueswill be expanded and the benchmarks are thenpressed together in theresult. This allows you to benchmark a set of expressions across a widevariety of input sizes, perform replications and other useful tasks.

set.seed(42)create_df<-function(rows,cols) {out<- replicate(cols, runif(rows,1,100),simplify=FALSE)out<- setNames(out, rep_len(c("x",letters),cols))  as.data.frame(out)}results<-bench::press(rows= c(1000,10000),cols= c(2,10),  {dat<- create_df(rows,cols)bench::mark(min_iterations=100,bracket=dat[dat$x>500, ],which=dat[which(dat$x>500), ],subset= subset(dat,x>500)    )  })#> Running with:#>    rows  cols#> 1  1000     2#> 2 10000     2#> 3  1000    10#> 4 10000    10results#> # A tibble: 12 × 8#>    expression  rows  cols      min   median `itr/sec` mem_alloc `gc/sec`#>    <bch:expr> <dbl> <dbl> <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>#>  1 bracket     1000     2     27µs     34µs    27964.   15.84KB     19.6#>  2 which       1000     2   25.7µs   33.4µs    29553.    7.91KB     17.7#>  3 subset      1000     2   45.9µs   58.2µs    16793.    27.7KB     17.1#>  4 bracket    10000     2   64.1µs   70.8µs    13447.  156.46KB     40.5#>  5 which      10000     2   46.7µs   54.7µs    17586.   78.23KB     23.3#>  6 subset     10000     2  116.2µs  132.1µs     7228.  273.79KB     40.9#>  7 bracket     1000    10   77.2µs   85.4µs    11335.   47.52KB     19.9#>  8 which       1000    10   67.8µs   75.2µs    13073.    7.91KB     23.2#>  9 subset      1000    10   84.7µs  107.5µs     9281.   59.38KB     18.8#> 10 bracket    10000    10  130.2µs  169.1µs     5799.   469.4KB     52.2#> 11 which      10000    10   75.1µs     96µs    10187.   78.23KB     17.4#> 12 subset     10000    10  222.7µs    253µs     3810.  586.73KB     43.3

Plotting

ggplot2::autoplot() can be used to generate an informative defaultplot. This plot is colored by gc level (0, 1, or 2) and faceted byparameters (if any). By default it generates abeeswarm plot,however you can also specify other plot types (jitter,ridge,boxplot,violin). See?autoplot.bench_mark for full details.

ggplot2::autoplot(results)

You can also produce fully custom plots by un-nesting the results andworking with the data directly.

library(tidyverse)results %>%  unnest(c(time,gc)) %>%  filter(gc=="none") %>%  mutate(expression= as.character(expression)) %>%  ggplot(aes(x=mem_alloc,y=time,color=expression))+  geom_point()+  scale_color_bench_expr(scales::brewer_pal(type="qual",palette=3))

system_time()

bench also includessystem_time(), a higher precision alternativetosystem.time().

bench::system_time({i<-1while (i<1e7) {i<-i+1  }})#> process    real#>   1.73s    1.7sbench::system_time(Sys.sleep(.5))#> process    real#>    58µs   497ms

Alternatives

About

High Precision Timing of R Expressions

Topics

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Contributors22

Languages


[8]ページ先頭

©2009-2025 Movatter.jp