Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

Your LLM, Your Data , Your GUI.

License

NotificationsYou must be signed in to change notification settings

qusaismael/localllm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Python VersionLicense

A simple Flask-based web GUI that enables local AI (LLMs) inference usingollama for model serving. This project is currently inAlpha phase and open to any contributions. Created by@qusaismael.

If you'd like to support this project, consider donating via PayPal:Donate

image


Table of Contents


Features

  • Multiple Model Support: Easily switch between different local LLM models (e.g.,deepseek-r1,qwen2.5,codellama, etc.)
  • Streaming Responses: See tokens appear in real time using server-sent events (SSE)
  • Markdown and Code Block Rendering: Code blocks with syntax highlighting and copy-to-clipboard
  • Raw Output Toggle: Debug with raw text output visibility
  • Cross-Platform: Works on Windows, Linux, and macOS
  • Keyboard Shortcuts:
    • Shift+Enter: New line
    • Enter: Send message

System Requirements & Recommendations

  • Python 3.7+
    Required for Flask compatibility

  • pip/venv
    For dependency management and environment isolation

  • ollama
    Installation required
    Verify installation:

    ollama --version
  • Hardware:

    • Minimum: 8GB RAM (for smaller models)
    • Recommended: 16GB+ RAM + NVIDIA GPU (for larger models)
    • Disk Space: 10GB+ for model storage

Installation

  1. Clone Repository

    git clone https://github.com/qusaismael/localllm.gitcd localllm
  2. Setup Virtual Environment

    # Linux/macOSpython3 -m venv venvsource venv/bin/activate# Windowspython -m venv venvvenv\Scripts\activate
  3. Install Dependencies

    pip install -r requirements.txt
  4. Configure Ollama

    • Ensure Ollama is running:
      ollama serve
    • Download models first:
      ollama pull deepseek-r1:14b

Usage

  1. Start Server

    python app.py

    Access athttp://localhost:5000

  2. First-Time Setup

    • Select model from available options
    • If models aren't listed, ensure they're downloaded via Ollama
  3. Basic Operations

    • Type prompt & press Enter to send
    • Toggle raw output for debugging
    • Copy code blocks with one click

Security Notice

⚠️Important Security Considerations:

  • Default binding:0.0.0.0 (accessible on your network)
  • Not recommended for public internet exposure
  • No authentication layer implemented
  • Use firewall rules to restrict access if needed

Troubleshooting

Common Issues:

  1. "Model not found" error

    ollama pull<model-name>
  2. Port conflictModifyPORT variable inapp.py

  3. Slow responses

    • Try smaller models first
    • Check system resource usage
    • Ensure GPU acceleration is enabled if available
  4. Windows path issuesUpdateOLLAMA_PATH inapp.py to your installation path


Project Status

Alpha Release
Current version: 0.1.0

Known Limitations:

  • No conversation history
  • Basic error handling
  • Limited model configuration

Roadmap

  • Conversation history support
  • Model download UI
  • Docker support
  • System resource monitoring

Contributing

Welcome! Please follow these steps:

  1. Fork repository
  2. Create feature branch
  3. Submit PR with description

Development Setup:

pip install -r requirements-dev.txtpre-commit install

Guidelines:

  • Follow PEP8 style
  • Add tests for new features
  • Update documentation accordingly

License

MIT License - SeeLICENSE for details


Acknowledgments

  • Built withFlask
  • LLM backend byOllama
  • Inspired by the Open Source AI community

References


Created by@qusaismael
Open Source • Contributions Welcome!


[8]ページ先頭

©2009-2025 Movatter.jp