Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Create output objects in operations.rst examples#440

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to ourterms of service andprivacy statement. We’ll occasionally send you account related emails.

Already on GitHub?Sign in to your account

Merged
Merged
Changes fromall commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 20 additions & 2 deletionsdocs/user_guide/operations.rst
View file
Open in desktop
Original file line numberDiff line numberDiff line change
Expand Up@@ -30,6 +30,7 @@ a Vector is treated as an nx1 column matrix.
[2., 5., 1.5, 4.25, 0.5], nrows=4, ncols=4)
B = gb.Matrix.from_coo([0, 0, 1, 1, 2, 2, 3, 3], [1, 2, 0, 1, 1, 2, 0, 1],
[3., 2., 9., 6., 3., 1., 0., 5.])
C = gb.Matrix(float, A.nrows, B.ncols)

# These are equivalent
C << A.mxm(B, op='min_plus') # method style
Expand DownExpand Up@@ -69,6 +70,7 @@ a Vector is treated as an nx1 column matrix.
A = gb.Matrix.from_coo([0, 0, 1, 1, 2], [1, 2, 2, 3, 3],
[2., 5., 1.5, 4.25, 0.5], nrows=4, ncols=4)
v = gb.Vector.from_coo([0, 1, 3], [10., 20., 40.])
w = gb.Vector(float, A.nrows)

# These are equivalent
w << A.mxv(v, op='plus_times') # method style
Expand DownExpand Up@@ -102,6 +104,7 @@ a Vector is treated as an nx1 column matrix.
v = gb.Vector.from_coo([0, 1, 3], [10., 20., 40.])
B = gb.Matrix.from_coo([0, 0, 1, 1, 2, 2, 3, 3], [1, 2, 0, 1, 1, 2, 0, 1],
[3., 2., 9., 6., 3., 1., 0., 5.])
u = gb.Vector(float, B.ncols)

# These are equivalent
u << v.vxm(B, op='plus_plus') # method style
Expand DownExpand Up@@ -149,6 +152,7 @@ Example usage:
[2.0, 5.0, 1.5, 4.0, 0.5])
B = gb.Matrix.from_coo([0, 0, 1, 1, 2, 2], [1, 2, 0, 1, 1, 2],
[3., -2., 0., 6., 3., 1.])
C = gb.Matrix(float, A.nrows, A.ncols)

# These are equivalent
C << A.ewise_mult(B, op='min') # method style
Expand DownExpand Up@@ -221,10 +225,11 @@ should be used with the functional syntax, ``left_default`` and ``right_default`

.. code-block:: python

A = gb.Matrix.from_coo([0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 2],
A = gb.Matrix.from_coo([0, 0, 0, 1, 1], [0, 1, 2, 0, 2],
[9.0, 2.0, 5.0, 1.5, 4.0], nrows=3)
B = gb.Matrix.from_coo([0, 0, 0, 2, 2, 2], [0, 1, 2, 0, 1, 2],
[4., 0., -2., 6., 3., 1.])
C = gb.Matrix(float, A.nrows, A.ncols)

# These are equivalent
C << A.ewise_add(B, op='minus') # method style
Expand DownExpand Up@@ -258,10 +263,11 @@ should be used with the functional syntax, ``left_default`` and ``right_default`

.. code-block:: python

A = gb.Matrix.from_coo([0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 2],
A = gb.Matrix.from_coo([0, 0, 0, 1, 1], [0, 1, 2, 0, 2],
[9.0, 2.0, 5.0, 1.5, 4.0], nrows=3)
B = gb.Matrix.from_coo([0, 0, 0, 2, 2, 2], [0, 1, 2, 0, 1, 2],
[4., 0., -2., 6., 3., 1.])
C = gb.Matrix(float, A.nrows, A.ncols)

# These are equivalent
C << A.ewise_union(B, op='minus', left_default=0, right_default=0) # method style
Expand DownExpand Up@@ -315,6 +321,7 @@ Vector Slice Example:
.. code-block:: python

v = gb.Vector.from_coo([0, 1, 3, 4, 6], [10., 2., 40., -5., 24.])
w = gb.Vector(float, 4)

w << v[:4]

Expand All@@ -336,6 +343,7 @@ Matrix List Example:

A = gb.Matrix.from_coo([0, 0, 1, 1, 2, 2], [1, 2, 0, 1, 0, 2],
[2.0, 5.0, 1.5, 4.0, 0.5, -7.0])
C = gb.Matrix(float, 2, A.ncols)

C << A[[0, 2], :]

Expand DownExpand Up@@ -473,6 +481,7 @@ function with the collection as the argument.
.. code-block:: python

v = gb.Vector.from_coo([0, 1, 3], [10., 20., 40.])
w = gb.Vector(float, v.size)

# These are equivalent
w << v.apply(gb.unary.minv)
Expand All@@ -495,6 +504,7 @@ function with the collection as the argument.
.. code-block:: python

v = gb.Vector.from_coo([0, 1, 3], [10., 20., 40.])
w = gb.Vector(int, v.size)

# These are equivalent
w << v.apply(gb.indexunary.index)
Expand All@@ -517,6 +527,7 @@ function with the collection as the argument.
.. code-block:: python

v = gb.Vector.from_coo([0, 1, 3], [10., 20., 40.])
w = gb.Vector(float, v.size)

# These are all equivalent
w << v.apply('minus', right=15)
Expand DownExpand Up@@ -548,6 +559,7 @@ Upper Triangle Example:

A = gb.Matrix.from_coo([0, 0, 1, 1, 2, 2], [1, 2, 0, 2, 1, 2],
[2.0, 5.0, 1.5, 4.0, 0.5, -7.0])
C = gb.Matrix(float, A.nrows, A.ncols)

# These are equivalent
C << A.select('triu')
Expand All@@ -574,6 +586,7 @@ Select by Value Example:
.. code-block:: python

v = gb.Vector.from_coo([0, 1, 3, 4, 6], [10., 2., 40., -5., 24.])
w = gb.Vector(float, v.size)

# These are equivalent
w << v.select('>=', 5)
Expand DownExpand Up@@ -607,6 +620,7 @@ A monoid or aggregator is used to perform the reduction.

A = gb.Matrix.from_coo([0, 0, 1, 1, 2, 2], [1, 3, 0, 1, 0, 1],
[2.0, 5.0, 1.5, 4.0, 0.5, -7.0])
w = gb.Vector(float, A.ncols)

w << A.reduce_columnwise('times')

Expand All@@ -630,6 +644,7 @@ A monoid or aggregator is used to perform the reduction.

A = gb.Matrix.from_coo([0, 0, 1, 1, 2, 2], [1, 3, 0, 1, 0, 1],
[2.0, 5.0, 1.5, 4.0, 0.5, -7.0])
s = gb.Scalar(float)

s << A.reduce_scalar('max')

Expand All@@ -652,6 +667,7 @@ A monoid or aggregator is used to perform the reduction.
.. code-block:: python

v = gb.Vector.from_coo([0, 1, 3, 4, 6], [10., 2., 40., -5., 24.])
s = gb.Scalar(int)

# These are equivalent
s << v.reduce('argmin')
Expand DownExpand Up@@ -681,6 +697,7 @@ To force the transpose to be computed by itself, use it by itself as the right-h

A = gb.Matrix.from_coo([0, 0, 1, 1, 2, 2], [1, 3, 0, 1, 0, 2],
[2.0, 5.0, 1.5, 4.0, 0.5, -7.0])
C = gb.Matrix(float, A.ncols, A.nrows)

C << A.T

Expand DownExpand Up@@ -714,6 +731,7 @@ The Kronecker product uses a binary operator.
A = gb.Matrix.from_coo([0, 0, 1], [0, 1, 0], [1., -2., 3.])
B = gb.Matrix.from_coo([0, 0, 1, 1, 2, 2], [1, 2, 0, 1, 0, 2],
[2.0, 5.0, 1.5, 4.0, 0.5, -7.0])
C = gb.Matrix(float, A.nrows * B.nrows, A.ncols * B.ncols)

C << A.kronecker(B, 'times')

Expand Down

[8]ページ先頭

©2009-2025 Movatter.jp