Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit319a756

Browse files
authored
Small doc updates (#364)
* fix code blocks in iosys.rst
1 parent45b0915 commit319a756

File tree

1 file changed

+8
-8
lines changed

1 file changed

+8
-8
lines changed

‎doc/iosys.rst‎

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -66,7 +66,7 @@ values in FBS2e.
6666

6767
We begin by defining the dynamics of the system
6868

69-
..code-block::
69+
..code-block::python
7070
7171
import control
7272
import numpyas np
@@ -96,7 +96,7 @@ We begin by defining the dynamics of the system
9696
9797
We now create an input/output system using these dynamics:
9898

99-
..code-block::
99+
..code-block::python
100100
101101
io_predprey= control.NonlinearIOSystem(
102102
predprey_rhs,None,inputs=('u'),outputs=('H','L'),
@@ -108,7 +108,7 @@ will be used as the output of the system.
108108
The `io_predprey` system can now be simulated to obtain the open loop dynamics
109109
of the system:
110110

111-
..code-block::
111+
..code-block::python
112112
113113
X0= [25,20]# Initial H, L
114114
T= np.linspace(0,70,500)# Simulation 70 years of time
@@ -127,7 +127,7 @@ We can also create a feedback controller to stabilize a desired population of
127127
the system. We begin by finding the (unstable) equilibrium point for the
128128
system and computing the linearization about that point.
129129

130-
..code-block::
130+
..code-block::python
131131
132132
eqpt= control.find_eqpt(io_predprey, X0,0)
133133
xeq= eqpt[0]# choose the nonzero equilibrium point
@@ -137,7 +137,7 @@ We next compute a controller that stabilizes the equilibrium point using
137137
eigenvalue placement and computing the feedforward gain using the number of
138138
lynxes as the desired output (following FBS2e, Example 7.5):
139139

140-
..code-block::
140+
..code-block::python
141141
142142
K= control.place(lin_predprey.A, lin_predprey.B, [-0.1,-0.2])
143143
A, B= lin_predprey.A, lin_predprey.B
@@ -149,7 +149,7 @@ applies a corrective input based on deviations from the equilibrium point.
149149
This system has no dynamics, since it is a static (affine) map, and can
150150
constructed using the `~control.ios.NonlinearIOSystem` class:
151151

152-
..code-block::
152+
..code-block::python
153153
154154
io_controller= control.NonlinearIOSystem(
155155
None,
@@ -162,7 +162,7 @@ populations followed by the desired lynx population.
162162
To connect the controller to the predatory-prey model, we create an
163163
`InterconnectedSystem`:
164164

165-
..code-block::
165+
..code-block::python
166166
167167
io_closed= control.InterconnectedSystem(
168168
(io_predprey, io_controller),# systems
@@ -177,7 +177,7 @@ To connect the controller to the predatory-prey model, we create an
177177
178178
Finally, we simulate the closed loop system:
179179

180-
..code-block::
180+
..code-block::python
181181
182182
# Simulate the system
183183
t, y= control.input_output_response(io_closed, T,30, [15,20])

0 commit comments

Comments
 (0)

[8]ページ先頭

©2009-2025 Movatter.jp