Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit758b578

Browse files
github-actions[bot]mattwang44
authored andcommitted
sync with cpython e8963a86
1 parent24c9cd7 commit758b578

File tree

1 file changed

+65
-13
lines changed

1 file changed

+65
-13
lines changed

‎library/statistics.po

Lines changed: 65 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@ msgid ""
88
msgstr ""
99
"Project-Id-Version:Python 3.12\n"
1010
"Report-Msgid-Bugs-To:\n"
11-
"POT-Creation-Date:2023-05-03 00:17+0000\n"
11+
"POT-Creation-Date:2023-08-15 00:03+0000\n"
1212
"PO-Revision-Date:2023-07-22 21:15+0800\n"
1313
"Last-Translator:Adrian Liaw <adrianliaw2000@gmail.com>\n"
1414
"Language-Team:Chinese - TAIWAN (https://github.com/python/python-docs-zh-"
@@ -1275,11 +1275,15 @@ msgstr ""
12751275
msgid":class:`NormalDist` Examples and Recipes"
12761276
msgstr":class:`NormalDist` 範例與錦囊妙計"
12771277

1278-
#:../../library/statistics.rst:925
1278+
#:../../library/statistics.rst:927
1279+
msgid"Classic probability problems"
1280+
msgstr""
1281+
1282+
#:../../library/statistics.rst:929
12791283
msgid":class:`NormalDist` readily solves classic probability problems."
12801284
msgstr":class:`NormalDist` 可以輕易地解決經典的機率問題。"
12811285

1282-
#:../../library/statistics.rst:927
1286+
#:../../library/statistics.rst:931
12831287
msgid""
12841288
"For example, given `historical data for SAT exams <https://nces.ed.gov/"
12851289
"programs/digest/d17/tables/dt17_226.40.asp>`_ showing that scores are "
@@ -1291,15 +1295,19 @@ msgstr ""
12911295
"tables/dt17_226.40.asp>`_,顯示成績為平均 1060、標準差 195 的常態分布。我們要"
12921296
"求出分數在 1100 與 1200 之間(四捨五入至最接近的整數)的學生的百分比:"
12931297

1294-
#:../../library/statistics.rst:940
1298+
#:../../library/statistics.rst:944
12951299
msgid""
12961300
"Find the `quartiles <https://en.wikipedia.org/wiki/Quartile>`_ and `deciles "
12971301
"<https://en.wikipedia.org/wiki/Decile>`_ for the SAT scores:"
12981302
msgstr""
12991303
"找出 SAT 分數的\\ `四分位數 <https://en.wikipedia.org/wiki/Quartile>`_\\ 以及"
13001304
"\\ `十分位數 <https://en.wikipedia.org/wiki/Decile>`_:"
13011305

1302-
#:../../library/statistics.rst:950
1306+
#:../../library/statistics.rst:956
1307+
msgid"Monte Carlo inputs for simulations"
1308+
msgstr""
1309+
1310+
#:../../library/statistics.rst:958
13031311
msgid""
13041312
"To estimate the distribution for a model than isn't easy to solve "
13051313
"analytically, :class:`NormalDist` can generate input samples for a `Monte "
@@ -1309,7 +1317,11 @@ msgstr ""
13091317
"樣本以進行 `Monte Carlo 模擬 <https://en.wikipedia.org/wiki/"
13101318
"Monte_Carlo_method>`_:"
13111319

1312-
#:../../library/statistics.rst:966
1320+
#:../../library/statistics.rst:975
1321+
msgid"Approximating binomial distributions"
1322+
msgstr""
1323+
1324+
#:../../library/statistics.rst:977
13131325
msgid""
13141326
"Normal distributions can be used to approximate `Binomial distributions "
13151327
"<https://mathworld.wolfram.com/BinomialDistribution.html>`_ when the sample "
@@ -1319,7 +1331,7 @@ msgstr ""
13191331
"(Binomial distributions) <https://mathworld.wolfram.com/BinomialDistribution."
13201332
"html>`_。"
13211333

1322-
#:../../library/statistics.rst:971
1334+
#:../../library/statistics.rst:982
13231335
msgid""
13241336
"For example, an open source conference has 750 attendees and two rooms with "
13251337
"a 500 person capacity. There is a talk about Python and another about Ruby. "
@@ -1332,11 +1344,15 @@ msgstr ""
13321344
"向參與 Python 講座。假設參與者的偏好沒有改變,那麼 Python 會議室未超過自身容"
13331345
"量限制的機率是?"
13341346

1335-
#:../../library/statistics.rst:1003
1347+
#:../../library/statistics.rst:1016
1348+
msgid"Naive bayesian classifier"
1349+
msgstr""
1350+
1351+
#:../../library/statistics.rst:1018
13361352
msgid"Normal distributions commonly arise in machine learning problems."
13371353
msgstr"常態分布常在機器學習問題中出現。"
13381354

1339-
#:../../library/statistics.rst:1005
1355+
#:../../library/statistics.rst:1020
13401356
msgid""
13411357
"Wikipedia has a `nice example of a Naive Bayesian Classifier <https://en."
13421358
"wikipedia.org/wiki/Naive_Bayes_classifier#Person_classification>`_. The "
@@ -1347,7 +1363,7 @@ msgstr ""
13471363
"wiki/Naive_Bayes_classifier#Person_classification>`_。課題為從身高、體重與鞋"
13481364
"子尺寸等符合常態分布的特徵量測值中判斷一個人的性別。"
13491365

1350-
#:../../library/statistics.rst:1010
1366+
#:../../library/statistics.rst:1025
13511367
msgid""
13521368
"We're given a training dataset with measurements for eight people. The "
13531369
"measurements are assumed to be normally distributed, so we summarize the "
@@ -1356,13 +1372,13 @@ msgstr ""
13561372
"給定一組包含八個人的量測值的訓練資料集。假設這些量測值服從常態分布,我們可以"
13571373
"利用 :class:`NormalDist` 來總結資料:"
13581374

1359-
#:../../library/statistics.rst:1023
1375+
#:../../library/statistics.rst:1038
13601376
msgid""
13611377
"Next, we encounter a new person whose feature measurements are known but "
13621378
"whose gender is unknown:"
13631379
msgstr"接著,我們遇到一個新的人,他的特徵量測值已知,但性別未知:"
13641380

1365-
#:../../library/statistics.rst:1032
1381+
#:../../library/statistics.rst:1047
13661382
msgid""
13671383
"Starting with a 50% `prior probability <https://en.wikipedia.org/wiki/"
13681384
"Prior_probability>`_ of being male or female, we compute the posterior as "
@@ -1373,7 +1389,7 @@ msgstr ""
13731389
"org/wiki/Prior_probability>`_ 為開端,我們將後驗機率 (posterior probability) "
13741390
"計算為先驗機率乘以給定性別下,各特徵量測值的概度乘積:"
13751391

1376-
#:../../library/statistics.rst:1047
1392+
#:../../library/statistics.rst:1062
13771393
msgid""
13781394
"The final prediction goes to the largest posterior. This is known as the "
13791395
"`maximum a posteriori <https://en.wikipedia.org/wiki/"
@@ -1382,3 +1398,39 @@ msgstr ""
13821398
"最終的預測結果將取決於最大的後驗機率。這被稱為\\ `最大後驗機率 (maximum a "
13831399
"posteriori) <https://en.wikipedia.org/wiki/"
13841400
"Maximum_a_posteriori_estimation>`_ 或者 MAP:"
1401+
1402+
#:../../library/statistics.rst:1073
1403+
msgid"Kernel density estimation"
1404+
msgstr""
1405+
1406+
#:../../library/statistics.rst:1075
1407+
msgid""
1408+
"It is possible to estimate a continuous probability density function from a "
1409+
"fixed number of discrete samples."
1410+
msgstr""
1411+
1412+
#:../../library/statistics.rst:1078
1413+
msgid""
1414+
"The basic idea is to smooth the data using `a kernel function such as a "
1415+
"normal distribution, triangular distribution, or uniform distribution "
1416+
"<https://en.wikipedia.org/wiki/"
1417+
"Kernel_(statistics)#Kernel_functions_in_common_use>`_. The degree of "
1418+
"smoothing is controlled by a single parameter, ``h``, representing the "
1419+
"variance of the kernel function."
1420+
msgstr""
1421+
1422+
#:../../library/statistics.rst:1097
1423+
msgid""
1424+
"`Wikipedia has an example <https://en.wikipedia.org/wiki/"
1425+
"Kernel_density_estimation#Example>`_ where we can use the ``kde_normal()`` "
1426+
"recipe to generate and plot a probability density function estimated from a "
1427+
"small sample:"
1428+
msgstr""
1429+
1430+
#:../../library/statistics.rst:1109
1431+
msgid"The points in ``xarr`` and ``yarr`` can be used to make a PDF plot:"
1432+
msgstr""
1433+
1434+
#:../../library/statistics.rst:-1
1435+
msgid"Scatter plot of the estimated probability density function."
1436+
msgstr""

0 commit comments

Comments
 (0)

[8]ページ先頭

©2009-2025 Movatter.jp