8
8
msgstr ""
9
9
"Project-Id-Version :Python 3.12\n "
10
10
"Report-Msgid-Bugs-To :\n "
11
- "POT-Creation-Date :2023-05-03 00:17 +0000\n "
11
+ "POT-Creation-Date :2023-08-15 00:03 +0000\n "
12
12
"PO-Revision-Date :2023-07-22 21:15+0800\n "
13
13
"Last-Translator :Adrian Liaw <adrianliaw2000@gmail.com>\n "
14
14
"Language-Team :Chinese - TAIWAN (https://github.com/python/python-docs-zh- "
@@ -1275,11 +1275,15 @@ msgstr ""
1275
1275
msgid ":class:`NormalDist` Examples and Recipes"
1276
1276
msgstr ":class:`NormalDist` 範例與錦囊妙計"
1277
1277
1278
- #: ../../library/statistics.rst:925
1278
+ #: ../../library/statistics.rst:927
1279
+ msgid "Classic probability problems"
1280
+ msgstr ""
1281
+
1282
+ #: ../../library/statistics.rst:929
1279
1283
msgid ":class:`NormalDist` readily solves classic probability problems."
1280
1284
msgstr ":class:`NormalDist` 可以輕易地解決經典的機率問題。"
1281
1285
1282
- #: ../../library/statistics.rst:927
1286
+ #: ../../library/statistics.rst:931
1283
1287
msgid ""
1284
1288
"For example, given `historical data for SAT exams <https://nces.ed.gov/"
1285
1289
"programs/digest/d17/tables/dt17_226.40.asp>`_ showing that scores are "
@@ -1291,15 +1295,19 @@ msgstr ""
1291
1295
"tables/dt17_226.40.asp>`_,顯示成績為平均 1060、標準差 195 的常態分布。我們要"
1292
1296
"求出分數在 1100 與 1200 之間(四捨五入至最接近的整數)的學生的百分比:"
1293
1297
1294
- #: ../../library/statistics.rst:940
1298
+ #: ../../library/statistics.rst:944
1295
1299
msgid ""
1296
1300
"Find the `quartiles <https://en.wikipedia.org/wiki/Quartile>`_ and `deciles "
1297
1301
"<https://en.wikipedia.org/wiki/Decile>`_ for the SAT scores:"
1298
1302
msgstr ""
1299
1303
"找出 SAT 分數的\\ `四分位數 <https://en.wikipedia.org/wiki/Quartile>`_\\ 以及"
1300
1304
"\\ `十分位數 <https://en.wikipedia.org/wiki/Decile>`_:"
1301
1305
1302
- #: ../../library/statistics.rst:950
1306
+ #: ../../library/statistics.rst:956
1307
+ msgid "Monte Carlo inputs for simulations"
1308
+ msgstr ""
1309
+
1310
+ #: ../../library/statistics.rst:958
1303
1311
msgid ""
1304
1312
"To estimate the distribution for a model than isn't easy to solve "
1305
1313
"analytically, :class:`NormalDist` can generate input samples for a `Monte "
@@ -1309,7 +1317,11 @@ msgstr ""
1309
1317
"樣本以進行 `Monte Carlo 模擬 <https://en.wikipedia.org/wiki/"
1310
1318
"Monte_Carlo_method>`_:"
1311
1319
1312
- #: ../../library/statistics.rst:966
1320
+ #: ../../library/statistics.rst:975
1321
+ msgid "Approximating binomial distributions"
1322
+ msgstr ""
1323
+
1324
+ #: ../../library/statistics.rst:977
1313
1325
msgid ""
1314
1326
"Normal distributions can be used to approximate `Binomial distributions "
1315
1327
"<https://mathworld.wolfram.com/BinomialDistribution.html>`_ when the sample "
@@ -1319,7 +1331,7 @@ msgstr ""
1319
1331
"(Binomial distributions) <https://mathworld.wolfram.com/BinomialDistribution."
1320
1332
"html>`_。"
1321
1333
1322
- #: ../../library/statistics.rst:971
1334
+ #: ../../library/statistics.rst:982
1323
1335
msgid ""
1324
1336
"For example, an open source conference has 750 attendees and two rooms with "
1325
1337
"a 500 person capacity. There is a talk about Python and another about Ruby. "
@@ -1332,11 +1344,15 @@ msgstr ""
1332
1344
"向參與 Python 講座。假設參與者的偏好沒有改變,那麼 Python 會議室未超過自身容"
1333
1345
"量限制的機率是?"
1334
1346
1335
- #: ../../library/statistics.rst:1003
1347
+ #: ../../library/statistics.rst:1016
1348
+ msgid "Naive bayesian classifier"
1349
+ msgstr ""
1350
+
1351
+ #: ../../library/statistics.rst:1018
1336
1352
msgid "Normal distributions commonly arise in machine learning problems."
1337
1353
msgstr "常態分布常在機器學習問題中出現。"
1338
1354
1339
- #: ../../library/statistics.rst:1005
1355
+ #: ../../library/statistics.rst:1020
1340
1356
msgid ""
1341
1357
"Wikipedia has a `nice example of a Naive Bayesian Classifier <https://en."
1342
1358
"wikipedia.org/wiki/Naive_Bayes_classifier#Person_classification>`_. The "
@@ -1347,7 +1363,7 @@ msgstr ""
1347
1363
"wiki/Naive_Bayes_classifier#Person_classification>`_。課題為從身高、體重與鞋"
1348
1364
"子尺寸等符合常態分布的特徵量測值中判斷一個人的性別。"
1349
1365
1350
- #: ../../library/statistics.rst:1010
1366
+ #: ../../library/statistics.rst:1025
1351
1367
msgid ""
1352
1368
"We're given a training dataset with measurements for eight people. The "
1353
1369
"measurements are assumed to be normally distributed, so we summarize the "
@@ -1356,13 +1372,13 @@ msgstr ""
1356
1372
"給定一組包含八個人的量測值的訓練資料集。假設這些量測值服從常態分布,我們可以"
1357
1373
"利用 :class:`NormalDist` 來總結資料:"
1358
1374
1359
- #: ../../library/statistics.rst:1023
1375
+ #: ../../library/statistics.rst:1038
1360
1376
msgid ""
1361
1377
"Next, we encounter a new person whose feature measurements are known but "
1362
1378
"whose gender is unknown:"
1363
1379
msgstr "接著,我們遇到一個新的人,他的特徵量測值已知,但性別未知:"
1364
1380
1365
- #: ../../library/statistics.rst:1032
1381
+ #: ../../library/statistics.rst:1047
1366
1382
msgid ""
1367
1383
"Starting with a 50% `prior probability <https://en.wikipedia.org/wiki/"
1368
1384
"Prior_probability>`_ of being male or female, we compute the posterior as "
@@ -1373,7 +1389,7 @@ msgstr ""
1373
1389
"org/wiki/Prior_probability>`_ 為開端,我們將後驗機率 (posterior probability) "
1374
1390
"計算為先驗機率乘以給定性別下,各特徵量測值的概度乘積:"
1375
1391
1376
- #: ../../library/statistics.rst:1047
1392
+ #: ../../library/statistics.rst:1062
1377
1393
msgid ""
1378
1394
"The final prediction goes to the largest posterior. This is known as the "
1379
1395
"`maximum a posteriori <https://en.wikipedia.org/wiki/"
@@ -1382,3 +1398,39 @@ msgstr ""
1382
1398
"最終的預測結果將取決於最大的後驗機率。這被稱為\\ `最大後驗機率 (maximum a "
1383
1399
"posteriori) <https://en.wikipedia.org/wiki/"
1384
1400
"Maximum_a_posteriori_estimation>`_ 或者 MAP:"
1401
+
1402
+ #: ../../library/statistics.rst:1073
1403
+ msgid "Kernel density estimation"
1404
+ msgstr ""
1405
+
1406
+ #: ../../library/statistics.rst:1075
1407
+ msgid ""
1408
+ "It is possible to estimate a continuous probability density function from a "
1409
+ "fixed number of discrete samples."
1410
+ msgstr ""
1411
+
1412
+ #: ../../library/statistics.rst:1078
1413
+ msgid ""
1414
+ "The basic idea is to smooth the data using `a kernel function such as a "
1415
+ "normal distribution, triangular distribution, or uniform distribution "
1416
+ "<https://en.wikipedia.org/wiki/"
1417
+ "Kernel_(statistics)#Kernel_functions_in_common_use>`_. The degree of "
1418
+ "smoothing is controlled by a single parameter, ``h``, representing the "
1419
+ "variance of the kernel function."
1420
+ msgstr ""
1421
+
1422
+ #: ../../library/statistics.rst:1097
1423
+ msgid ""
1424
+ "`Wikipedia has an example <https://en.wikipedia.org/wiki/"
1425
+ "Kernel_density_estimation#Example>`_ where we can use the ``kde_normal()`` "
1426
+ "recipe to generate and plot a probability density function estimated from a "
1427
+ "small sample:"
1428
+ msgstr ""
1429
+
1430
+ #: ../../library/statistics.rst:1109
1431
+ msgid "The points in ``xarr`` and ``yarr`` can be used to make a PDF plot:"
1432
+ msgstr ""
1433
+
1434
+ #: ../../library/statistics.rst: -1
1435
+ msgid "Scatter plot of the estimated probability density function."
1436
+ msgstr ""