|
| 1 | +{ |
| 2 | +"cells": [ |
| 3 | + { |
| 4 | +"cell_type":"code", |
| 5 | +"execution_count":null, |
| 6 | +"metadata": { |
| 7 | +"id":"iImkWEpRSiRq" |
| 8 | + }, |
| 9 | +"outputs": [], |
| 10 | +"source": [ |
| 11 | +"\n", |
| 12 | +"# Load libraries\n", |
| 13 | +"import pandas as pd\n", |
| 14 | +"import numpy as np\n", |
| 15 | +"from sklearn.datasets import load_iris, make_regression\n", |
| 16 | +"from sklearn.feature_selection import SelectKBest, chi2, f_classif, SelectPercentile, VarianceThreshold, RFECV\n", |
| 17 | +"from sklearn.preprocessing import StandardScaler\n", |
| 18 | +"import warnings\n", |
| 19 | +"from sklearn import datasets, linear_model" |
| 20 | + ] |
| 21 | + }, |
| 22 | + { |
| 23 | +"cell_type":"code", |
| 24 | +"execution_count":null, |
| 25 | +"metadata": { |
| 26 | +"colab": { |
| 27 | +"base_uri":"https://localhost:8080/" |
| 28 | + }, |
| 29 | +"id":"ZEK7KAyzSokS", |
| 30 | +"outputId":"7ce72382-c116-4f51-df7b-1f975c1c25f8" |
| 31 | + }, |
| 32 | +"outputs": [], |
| 33 | +"source": [ |
| 34 | +"# Load libraries\n", |
| 35 | +"# import data\n", |
| 36 | +"iris = datasets.load_iris()\n", |
| 37 | +"# Create features and target\n", |
| 38 | +"features_i = iris.data\n", |
| 39 | +"target_i = iris.target\n", |
| 40 | +"# thresholder creation\n", |
| 41 | +"thresholder = VarianceThreshold(threshold=.4)\n", |
| 42 | +"# high variance feature matrix creation\n", |
| 43 | +"f_high_variance = thresholder.fit_transform(features_i)\n", |
| 44 | +"# View high variance feature matrix\n", |
| 45 | +"f_high_variance[0:3]" |
| 46 | + ] |
| 47 | + }, |
| 48 | + { |
| 49 | +"cell_type":"code", |
| 50 | +"execution_count":null, |
| 51 | +"metadata": { |
| 52 | +"colab": { |
| 53 | +"base_uri":"https://localhost:8080/" |
| 54 | + }, |
| 55 | +"id":"7ZZgOg1-SpuX", |
| 56 | +"outputId":"a869adde-0b29-4630-9661-34377f110d4f" |
| 57 | + }, |
| 58 | +"outputs": [], |
| 59 | +"source": [ |
| 60 | +"# View variances\n", |
| 61 | +"thresholder.fit(features_i).variances_" |
| 62 | + ] |
| 63 | + }, |
| 64 | + { |
| 65 | +"cell_type":"code", |
| 66 | +"execution_count":null, |
| 67 | +"metadata": { |
| 68 | +"colab": { |
| 69 | +"base_uri":"https://localhost:8080/" |
| 70 | + }, |
| 71 | +"id":"zYNK4wP5Sq9R", |
| 72 | +"outputId":"30e18ea5-4b63-43e5-819e-9a99251dfae6" |
| 73 | + }, |
| 74 | +"outputs": [], |
| 75 | +"source": [ |
| 76 | +"\n", |
| 77 | +"# feature matrix stantardization\n", |
| 78 | +"scaler = StandardScaler()\n", |
| 79 | +"f_std = scaler.fit_transform(features_i)\n", |
| 80 | +"# variance of each feature calculation\n", |
| 81 | +"selection = VarianceThreshold()\n", |
| 82 | +"selection.fit(f_std).variances_" |
| 83 | + ] |
| 84 | + }, |
| 85 | + { |
| 86 | +"cell_type":"code", |
| 87 | +"execution_count":null, |
| 88 | +"metadata": { |
| 89 | +"colab": { |
| 90 | +"base_uri":"https://localhost:8080/" |
| 91 | + }, |
| 92 | +"id":"jDGMP97LSuiB", |
| 93 | +"outputId":"c1b9d537-495f-4109-ef75-324fe9943668" |
| 94 | + }, |
| 95 | +"outputs": [], |
| 96 | +"source": [ |
| 97 | +"# feature matrix creation with:\n", |
| 98 | +"# for Feature 0: 80% class 0\n", |
| 99 | +"# for Feature 1: 80% class 1\n", |
| 100 | +"# for Feature 2: 60% class 0, 40% class 1\n", |
| 101 | +"features_i = [[0, 2, 0],\n", |
| 102 | +"[0, 1, 1],\n", |
| 103 | +"[0, 1, 0],\n", |
| 104 | +"[0, 1, 1],\n", |
| 105 | +"[1, 0, 0]]\n", |
| 106 | +"# threshold by variance\n", |
| 107 | +"thresholding = VarianceThreshold(threshold=(.65 * (1 - .65)))\n", |
| 108 | +"thresholding.fit_transform(features_i)" |
| 109 | + ] |
| 110 | + }, |
| 111 | + { |
| 112 | +"cell_type":"code", |
| 113 | +"execution_count":null, |
| 114 | +"metadata": { |
| 115 | +"colab": { |
| 116 | +"base_uri":"https://localhost:8080/", |
| 117 | +"height":198 |
| 118 | + }, |
| 119 | +"id":"JvnObeKXS6xm", |
| 120 | +"outputId":"19dac143-9407-4bb4-cc23-b19b06025617" |
| 121 | + }, |
| 122 | +"outputs": [], |
| 123 | +"source": [ |
| 124 | +"# Create feature matrix with two highly correlated features\n", |
| 125 | +"features_m = np.array([[1, 1, 1],\n", |
| 126 | +"[2, 2, 0],\n", |
| 127 | +"[3, 3, 1],\n", |
| 128 | +"[4, 4, 0],\n", |
| 129 | +"[5, 5, 1],\n", |
| 130 | +"[6, 6, 0],\n", |
| 131 | +"[7, 7, 1],\n", |
| 132 | +"[8, 7, 0],\n", |
| 133 | +"[9, 7, 1]])\n", |
| 134 | +"# Conversion of feature matrix\n", |
| 135 | +"dataframe = pd.DataFrame(features_m)\n", |
| 136 | +"# correlation matrix creation\n", |
| 137 | +"corr_m = dataframe.corr().abs()\n", |
| 138 | +"# upper triangle selection\n", |
| 139 | +"upper1 = corr_m.where(np.triu(np.ones(corr_m.shape),\n", |
| 140 | +"k=1).astype(np.bool))\n", |
| 141 | +"# For correlation greater than 0.85, Find index of feature columns\n", |
| 142 | +"droping = [col for col in upper1.columns if any(upper1[col] > 0.85)]\n", |
| 143 | +"# Drop features\n", |
| 144 | +"dataframe.drop(dataframe.columns[droping], axis=1).head(3)" |
| 145 | + ] |
| 146 | + }, |
| 147 | + { |
| 148 | +"cell_type":"code", |
| 149 | +"execution_count":null, |
| 150 | +"metadata": { |
| 151 | +"colab": { |
| 152 | +"base_uri":"https://localhost:8080/" |
| 153 | + }, |
| 154 | +"id":"Dos1ZfkDS-Zd", |
| 155 | +"outputId":"17e96f0d-a55a-4943-90a9-99aa3c31fad3" |
| 156 | + }, |
| 157 | +"outputs": [], |
| 158 | +"source": [ |
| 159 | +"# Load data\n", |
| 160 | +"iris_i = load_iris()\n", |
| 161 | +"features_v = iris.data\n", |
| 162 | +"target = iris.target\n", |
| 163 | +"# categorical data coversion\n", |
| 164 | +"features_v = features_v.astype(int)\n", |
| 165 | +"# Selection of two features using highest chi-squared\n", |
| 166 | +"chi2_s = SelectKBest(chi2, k=2)\n", |
| 167 | +"f_kbest = chi2_s.fit_transform(features_v, target)\n", |
| 168 | +"# Show results\n", |
| 169 | +"print(\"Original number of features:\", features_v.shape[1])\n", |
| 170 | +"print(\"Reduced number of features:\", f_kbest.shape[1])" |
| 171 | + ] |
| 172 | + }, |
| 173 | + { |
| 174 | +"cell_type":"code", |
| 175 | +"execution_count":null, |
| 176 | +"metadata": { |
| 177 | +"colab": { |
| 178 | +"base_uri":"https://localhost:8080/" |
| 179 | + }, |
| 180 | +"id":"y10u_gQbTCwR", |
| 181 | +"outputId":"651182ab-d857-4a3d-db61-4fff866d167c" |
| 182 | + }, |
| 183 | +"outputs": [], |
| 184 | +"source": [ |
| 185 | +"# Selection of two features using highest F-values\n", |
| 186 | +"f_selector = SelectKBest(f_classif, k=2)\n", |
| 187 | +"f_kbest = f_selector.fit_transform(features_v, target)\n", |
| 188 | +"# Pisplay results\n", |
| 189 | +"print(\"Original number of features:\", features_v.shape[1])\n", |
| 190 | +"print(\"Reduced number of features:\", f_kbest.shape[1])" |
| 191 | + ] |
| 192 | + }, |
| 193 | + { |
| 194 | +"cell_type":"code", |
| 195 | +"execution_count":null, |
| 196 | +"metadata": { |
| 197 | +"colab": { |
| 198 | +"base_uri":"https://localhost:8080/" |
| 199 | + }, |
| 200 | +"id":"5NXAa6UKTHiu", |
| 201 | +"outputId":"c34866b2-c08c-4020-b14d-78deb98f2834" |
| 202 | + }, |
| 203 | +"outputs": [], |
| 204 | +"source": [ |
| 205 | +"# Selection of top 65% of features\n", |
| 206 | +"f_selector = SelectPercentile(f_classif, percentile=65)\n", |
| 207 | +"f_kbest = f_selector.fit_transform(features_v, target)\n", |
| 208 | +"# Display results\n", |
| 209 | +"print(\"Original number of features:\", features_v.shape[1])\n", |
| 210 | +"print(\"Reduced number of features:\", f_kbest.shape[1])" |
| 211 | + ] |
| 212 | + }, |
| 213 | + { |
| 214 | +"cell_type":"code", |
| 215 | +"execution_count":null, |
| 216 | +"metadata": { |
| 217 | +"colab": { |
| 218 | +"base_uri":"https://localhost:8080/" |
| 219 | + }, |
| 220 | +"id":"39-Wq-F9TKVg", |
| 221 | +"outputId":"e52c0537-2245-4f12-ea9a-ace232984ec1" |
| 222 | + }, |
| 223 | +"outputs": [], |
| 224 | +"source": [ |
| 225 | +"# Load libraries\n", |
| 226 | +"# Suppress an annoying but harmless warning\n", |
| 227 | +"warnings.filterwarnings(action=\"ignore\", module=\"scipy\",\n", |
| 228 | +"message=\"^internal gelsd\")\n", |
| 229 | +"# features matrix, target vector, true coefficients\n", |
| 230 | +"features_f, target_t = make_regression(n_samples = 10000,\n", |
| 231 | +"n_features = 100,\n", |
| 232 | +"n_informative = 2,\n", |
| 233 | +"random_state = 1)\n", |
| 234 | +"# linear regression creation\n", |
| 235 | +"ols = linear_model.LinearRegression()\n", |
| 236 | +"# Recursive features elimination\n", |
| 237 | +"rfecv = RFECV(estimator=ols, step=2, scoring=\"neg_mean_squared_error\")\n", |
| 238 | +"rfecv.fit(features_f, target_t)\n", |
| 239 | +"rfecv.transform(features_f)" |
| 240 | + ] |
| 241 | + }, |
| 242 | + { |
| 243 | +"cell_type":"code", |
| 244 | +"execution_count":null, |
| 245 | +"metadata": { |
| 246 | +"colab": { |
| 247 | +"base_uri":"https://localhost:8080/" |
| 248 | + }, |
| 249 | +"id":"Ut1mgIGEUhJM", |
| 250 | +"outputId":"f365a4d5-63f4-4a55-e828-d331e6f06308" |
| 251 | + }, |
| 252 | +"outputs": [], |
| 253 | +"source": [ |
| 254 | +"# Number of best features\n", |
| 255 | +"rfecv.n_features_" |
| 256 | + ] |
| 257 | + }, |
| 258 | + { |
| 259 | +"cell_type":"code", |
| 260 | +"execution_count":null, |
| 261 | +"metadata": { |
| 262 | +"colab": { |
| 263 | +"base_uri":"https://localhost:8080/" |
| 264 | + }, |
| 265 | +"id":"Lpt7I_Q0UjN1", |
| 266 | +"outputId":"4d6938dc-d813-42a5-c1b7-9ba4865a0e86" |
| 267 | + }, |
| 268 | +"outputs": [], |
| 269 | +"source": [ |
| 270 | +"# What the best categories ?\n", |
| 271 | +"rfecv.support_" |
| 272 | + ] |
| 273 | + }, |
| 274 | + { |
| 275 | +"cell_type":"code", |
| 276 | +"execution_count":null, |
| 277 | +"metadata": { |
| 278 | +"colab": { |
| 279 | +"base_uri":"https://localhost:8080/" |
| 280 | + }, |
| 281 | +"id":"ojYKsEbTUkMu", |
| 282 | +"outputId":"98652d92-f58f-41fe-9ba1-b1ecd3ef7ecb" |
| 283 | + }, |
| 284 | +"outputs": [], |
| 285 | +"source": [ |
| 286 | +"# We can even see how the features are ranked\n", |
| 287 | +"rfecv.ranking_" |
| 288 | + ] |
| 289 | + } |
| 290 | + ], |
| 291 | +"metadata": { |
| 292 | +"colab": { |
| 293 | +"name":"Untitled42.ipynb", |
| 294 | +"provenance": [] |
| 295 | + }, |
| 296 | +"kernelspec": { |
| 297 | +"display_name":"Python 3", |
| 298 | +"name":"python3" |
| 299 | + }, |
| 300 | +"language_info": { |
| 301 | +"name":"python" |
| 302 | + } |
| 303 | + }, |
| 304 | +"nbformat":4, |
| 305 | +"nbformat_minor":0 |
| 306 | +} |