|
| 1 | +{ |
| 2 | +"cells": [ |
| 3 | + { |
| 4 | +"cell_type":"code", |
| 5 | +"execution_count":null, |
| 6 | +"metadata": { |
| 7 | +"id":"NNamP65y8eGf" |
| 8 | + }, |
| 9 | +"outputs": [], |
| 10 | +"source": [ |
| 11 | +"from sklearn import datasets\n", |
| 12 | +"from sklearn.discriminant_analysis import LinearDiscriminantAnalysis\n", |
| 13 | +"from sklearn.decomposition import PCA, KernelPCA\n", |
| 14 | +"from sklearn.datasets import make_circles\n", |
| 15 | +"from sklearn.preprocessing import StandardScaler\n", |
| 16 | +"from sklearn.decomposition import NMF\n", |
| 17 | +"from sklearn.decomposition import TruncatedSVD\n", |
| 18 | +"from scipy.sparse import csr_matrix" |
| 19 | + ] |
| 20 | + }, |
| 21 | + { |
| 22 | +"cell_type":"code", |
| 23 | +"execution_count":2, |
| 24 | +"metadata": { |
| 25 | +"colab": { |
| 26 | +"base_uri":"https://localhost:8080/" |
| 27 | + }, |
| 28 | +"id":"fvJfKhFq8hQc", |
| 29 | +"outputId":"acbc4c59-acbd-4ff4-bacb-e54b55e0312f" |
| 30 | + }, |
| 31 | +"outputs": [ |
| 32 | + { |
| 33 | +"name":"stdout", |
| 34 | +"output_type":"stream", |
| 35 | +"text": [ |
| 36 | +"Original number of features: 64\n", |
| 37 | +"Reduced number of features: 40\n" |
| 38 | + ] |
| 39 | + } |
| 40 | + ], |
| 41 | +"source": [ |
| 42 | +"# Load the data\n", |
| 43 | +"digits = datasets.load_digits()\n", |
| 44 | +"# Feature matrix standardization\n", |
| 45 | +"features = StandardScaler().fit_transform(digits.data)\n", |
| 46 | +"# Perform PCA While retaining 80% of variance\n", |
| 47 | +"pca = PCA(n_components=0.95, whiten=True)\n", |
| 48 | +"# perform PCA\n", |
| 49 | +"pcafeatures = pca.fit_transform(features)\n", |
| 50 | +"# Display results\n", |
| 51 | +"print(\"Original number of features:\", features.shape[1])\n", |
| 52 | +"print(\"Reduced number of features:\", pcafeatures.shape[1])" |
| 53 | + ] |
| 54 | + }, |
| 55 | + { |
| 56 | +"cell_type":"code", |
| 57 | +"execution_count":3, |
| 58 | +"metadata": { |
| 59 | +"colab": { |
| 60 | +"base_uri":"https://localhost:8080/" |
| 61 | + }, |
| 62 | +"id":"jyU800Lf8it4", |
| 63 | +"outputId":"0d4c73bf-7d08-48e6-a44f-a5647a2e0c11" |
| 64 | + }, |
| 65 | +"outputs": [ |
| 66 | + { |
| 67 | +"name":"stdout", |
| 68 | +"output_type":"stream", |
| 69 | +"text": [ |
| 70 | +"Original number of features: 2\n", |
| 71 | +"Reduced number of features: 1\n" |
| 72 | + ] |
| 73 | + } |
| 74 | + ], |
| 75 | +"source": [ |
| 76 | +"# Creation of the linearly inseparable data\n", |
| 77 | +"features, _ = make_circles(n_samples=2000, random_state=1, noise=0.1, factor=0.1)\n", |
| 78 | +"# kernal PCA with radius basis function (RBF) kernel application\n", |
| 79 | +"k_pca = KernelPCA(kernel=\"rbf\", gamma=16, n_components=1)\n", |
| 80 | +"k_pcaf = k_pca.fit_transform(features)\n", |
| 81 | +"print(\"Original number of features:\", features.shape[1])\n", |
| 82 | +"print(\"Reduced number of features:\", k_pcaf.shape[1])" |
| 83 | + ] |
| 84 | + }, |
| 85 | + { |
| 86 | +"cell_type":"code", |
| 87 | +"execution_count":4, |
| 88 | +"metadata": { |
| 89 | +"colab": { |
| 90 | +"base_uri":"https://localhost:8080/" |
| 91 | + }, |
| 92 | +"id":"IfCo5TA28kn6", |
| 93 | +"outputId":"312956a9-9fb5-4296-d766-a3e642649da1" |
| 94 | + }, |
| 95 | +"outputs": [ |
| 96 | + { |
| 97 | +"name":"stdout", |
| 98 | +"output_type":"stream", |
| 99 | +"text": [ |
| 100 | +"number of features(original): 4\n", |
| 101 | +"number of features that was reduced: 1\n" |
| 102 | + ] |
| 103 | + } |
| 104 | + ], |
| 105 | +"source": [ |
| 106 | +"#flower dataset loading:\n", |
| 107 | +"iris = datasets.load_iris()\n", |
| 108 | +"features = iris.data\n", |
| 109 | +"target = iris.target\n", |
| 110 | +"# Creation of LDA. Use of LDA for features transformation\n", |
| 111 | +"lda = LinearDiscriminantAnalysis(n_components=1)\n", |
| 112 | +"features_lda = lda.fit(features, target).transform(features)\n", |
| 113 | +"# Print the number of features\n", |
| 114 | +"print(\"number of features(original):\", features.shape[1])\n", |
| 115 | +"print(\"number of features that was reduced:\", features_lda.shape[1])" |
| 116 | + ] |
| 117 | + }, |
| 118 | + { |
| 119 | +"cell_type":"code", |
| 120 | +"execution_count":5, |
| 121 | +"metadata": { |
| 122 | +"colab": { |
| 123 | +"base_uri":"https://localhost:8080/" |
| 124 | + }, |
| 125 | +"id":"yjQBlMtM8mQu", |
| 126 | +"outputId":"800279fb-f44b-43e8-9210-a35b8e190fc7" |
| 127 | + }, |
| 128 | +"outputs": [ |
| 129 | + { |
| 130 | +"data": { |
| 131 | +"text/plain": [ |
| 132 | +"array([0.9912126])" |
| 133 | + ] |
| 134 | + }, |
| 135 | +"execution_count":5, |
| 136 | +"metadata": {}, |
| 137 | +"output_type":"execute_result" |
| 138 | + } |
| 139 | + ], |
| 140 | +"source": [ |
| 141 | +"lda.explained_variance_ratio_" |
| 142 | + ] |
| 143 | + }, |
| 144 | + { |
| 145 | +"cell_type":"code", |
| 146 | +"execution_count":10, |
| 147 | +"metadata": { |
| 148 | +"colab": { |
| 149 | +"base_uri":"https://localhost:8080/" |
| 150 | + }, |
| 151 | +"id":"tHOWTxn18nf7", |
| 152 | +"outputId":"ae3c857a-0ca8-4508-affc-b5ea4dff6788" |
| 153 | + }, |
| 154 | +"outputs": [ |
| 155 | + { |
| 156 | +"data": { |
| 157 | +"text/plain": [ |
| 158 | +"1" |
| 159 | + ] |
| 160 | + }, |
| 161 | +"execution_count":10, |
| 162 | +"metadata": {}, |
| 163 | +"output_type":"execute_result" |
| 164 | + } |
| 165 | + ], |
| 166 | +"source": [ |
| 167 | +"# Load Iris flower dataset:\n", |
| 168 | +"iris123 = datasets.load_iris()\n", |
| 169 | +"features = iris123.data\n", |
| 170 | +"target = iris123.target\n", |
| 171 | +"# Create and run LDA\n", |
| 172 | +"lda_r = LinearDiscriminantAnalysis(n_components=None)\n", |
| 173 | +"features_lda = lda_r.fit(features, target)\n", |
| 174 | +"# array of explained variance ratios\n", |
| 175 | +"lda_var_r = lda_r.explained_variance_ratio_\n", |
| 176 | +"# function ceration\n", |
| 177 | +"def select_n_c(v_ratio, g_var: float) -> int:\n", |
| 178 | +" # initial variance explained setting\n", |
| 179 | +" total_v = 0.0\n", |
| 180 | +" # number of features initialisation\n", |
| 181 | +" n_components = 0\n", |
| 182 | +" # If we consider explained variance of each feature:\n", |
| 183 | +" for explained_v in v_ratio:\n", |
| 184 | +" # explained variance addition to the total\n", |
| 185 | +" total_v += explained_v\n", |
| 186 | +" # add one to number of components\n", |
| 187 | +" n_components += 1\n", |
| 188 | +" # we attain our goal level of explained variance\n", |
| 189 | +" if total_v >= g_var:\n", |
| 190 | +" # end the loop\n", |
| 191 | +" break\n", |
| 192 | +" # return the number of components\n", |
| 193 | +" return n_components\n", |
| 194 | +"\n", |
| 195 | +"# run the function\n", |
| 196 | +"select_n_c(lda_var_r, 0.95)" |
| 197 | + ] |
| 198 | + }, |
| 199 | + { |
| 200 | +"cell_type":"code", |
| 201 | +"execution_count":7, |
| 202 | +"metadata": { |
| 203 | +"colab": { |
| 204 | +"base_uri":"https://localhost:8080/" |
| 205 | + }, |
| 206 | +"id":"12zwY1Du8o6i", |
| 207 | +"outputId":"e9178fdf-2195-41cc-f4c3-a1e52c030df5" |
| 208 | + }, |
| 209 | +"outputs": [ |
| 210 | + { |
| 211 | +"name":"stderr", |
| 212 | +"output_type":"stream", |
| 213 | +"text": [ |
| 214 | +"/usr/local/lib/python3.7/dist-packages/sklearn/decomposition/_nmf.py:294: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).\n", |
| 215 | +" FutureWarning,\n" |
| 216 | + ] |
| 217 | + }, |
| 218 | + { |
| 219 | +"name":"stdout", |
| 220 | +"output_type":"stream", |
| 221 | +"text": [ |
| 222 | +"Original number of features: 64\n", |
| 223 | +"Reduced number of features: 12\n" |
| 224 | + ] |
| 225 | + }, |
| 226 | + { |
| 227 | +"name":"stderr", |
| 228 | +"output_type":"stream", |
| 229 | +"text": [ |
| 230 | +"/usr/local/lib/python3.7/dist-packages/sklearn/decomposition/_nmf.py:1641: ConvergenceWarning: Maximum number of iterations 200 reached. Increase it to improve convergence.\n", |
| 231 | +" ConvergenceWarning,\n" |
| 232 | + ] |
| 233 | + } |
| 234 | + ], |
| 235 | +"source": [ |
| 236 | +"# data loading\n", |
| 237 | +"digit = datasets.load_digits()\n", |
| 238 | +"# feature matrix loading\n", |
| 239 | +"feature_m = digit.data\n", |
| 240 | +"# Creation, fit and application of NMF\n", |
| 241 | +"n_mf = NMF(n_components=12, random_state=1)\n", |
| 242 | +"features_nmf = n_mf.fit_transform(feature_m)\n", |
| 243 | +"# Show results\n", |
| 244 | +"print(\"Original number of features:\", feature_m.shape[1])\n", |
| 245 | +"print(\"Reduced number of features:\", features_nmf.shape[1])" |
| 246 | + ] |
| 247 | + }, |
| 248 | + { |
| 249 | +"cell_type":"code", |
| 250 | +"execution_count":8, |
| 251 | +"metadata": { |
| 252 | +"colab": { |
| 253 | +"base_uri":"https://localhost:8080/" |
| 254 | + }, |
| 255 | +"id":"wrEYF9Ql8qtU", |
| 256 | +"outputId":"c28d28be-4f0b-4bd7-bb56-fde6ead38a45" |
| 257 | + }, |
| 258 | +"outputs": [ |
| 259 | + { |
| 260 | +"name":"stdout", |
| 261 | +"output_type":"stream", |
| 262 | +"text": [ |
| 263 | +"Original number of features: 64\n", |
| 264 | +"Reduced number of features: 12\n" |
| 265 | + ] |
| 266 | + } |
| 267 | + ], |
| 268 | +"source": [ |
| 269 | +"# data loading\n", |
| 270 | +"digit123 = datasets.load_digits()\n", |
| 271 | +"# feature matrix Standardization\n", |
| 272 | +"features_m = StandardScaler().fit_transform(digit123.data)\n", |
| 273 | +"# sparse matrix creation\n", |
| 274 | +"f_sparse = csr_matrix(features_m)\n", |
| 275 | +"# TSVD creation\n", |
| 276 | +"tsvd = TruncatedSVD(n_components=12)\n", |
| 277 | +"# sparse matrix TSVD\n", |
| 278 | +"features_sp_tsvd = tsvd.fit(f_sparse).transform(f_sparse)\n", |
| 279 | +"# results\n", |
| 280 | +"print(\"Original number of features:\", f_sparse.shape[1])\n", |
| 281 | +"print(\"Reduced number of features:\", features_sp_tsvd.shape[1])" |
| 282 | + ] |
| 283 | + }, |
| 284 | + { |
| 285 | +"cell_type":"code", |
| 286 | +"execution_count":9, |
| 287 | +"metadata": { |
| 288 | +"colab": { |
| 289 | +"base_uri":"https://localhost:8080/" |
| 290 | + }, |
| 291 | +"id":"xRQ_nUf_8sZA", |
| 292 | +"outputId":"19b8d99c-b330-406d-e728-407c18d82f20" |
| 293 | + }, |
| 294 | +"outputs": [ |
| 295 | + { |
| 296 | +"data": { |
| 297 | +"text/plain": [ |
| 298 | +"0.3003938539283667" |
| 299 | + ] |
| 300 | + }, |
| 301 | +"execution_count":9, |
| 302 | +"metadata": {}, |
| 303 | +"output_type":"execute_result" |
| 304 | + } |
| 305 | + ], |
| 306 | +"source": [ |
| 307 | +"# Sum of first three components' explained variance ratios\n", |
| 308 | +"tsvd.explained_variance_ratio_[0:3].sum()" |
| 309 | + ] |
| 310 | + }, |
| 311 | + { |
| 312 | +"cell_type":"code", |
| 313 | +"execution_count":null, |
| 314 | +"metadata": { |
| 315 | +"id":"zbExVkXp8vpi" |
| 316 | + }, |
| 317 | +"outputs": [], |
| 318 | +"source": [] |
| 319 | + } |
| 320 | + ], |
| 321 | +"metadata": { |
| 322 | +"colab": { |
| 323 | +"name":"DimentionalityReductionUsingFeatureExtraction_PythonCodeTutorial.ipynb", |
| 324 | +"provenance": [] |
| 325 | + }, |
| 326 | +"interpreter": { |
| 327 | +"hash":"f89a88aed07bbcd763ac68893150ace71e487877d8c6527a76855322f20001c6" |
| 328 | + }, |
| 329 | +"kernelspec": { |
| 330 | +"display_name":"Python 3.9.12 64-bit", |
| 331 | +"language":"python", |
| 332 | +"name":"python3" |
| 333 | + }, |
| 334 | +"language_info": { |
| 335 | +"name":"python", |
| 336 | +"version":"3.9.12" |
| 337 | + } |
| 338 | + }, |
| 339 | +"nbformat":4, |
| 340 | +"nbformat_minor":0 |
| 341 | +} |