77 *
88 *
99 * IDENTIFICATION
10- * $PostgreSQL: pgsql/src/backend/tsearch/ts_typanalyze.c,v 1.8 2010/01/02 16:57:53 momjian Exp $
10+ * $PostgreSQL: pgsql/src/backend/tsearch/ts_typanalyze.c,v 1.9 2010/05/30 21:59:02 tgl Exp $
1111 *
1212 *-------------------------------------------------------------------------
1313 */
@@ -92,21 +92,49 @@ ts_typanalyze(PG_FUNCTION_ARGS)
9292 *http://www.vldb.org/conf/2002/S10P03.pdf
9393 *
9494 *The Lossy Counting (aka LC) algorithm goes like this:
95- *Let D be a set of triples (e, f, d), where e is an element value, f is
96- *that element's frequency (occurrence count) and d is the maximum error in
97- *f.We start with D empty and process the elements in batches of size
98- *w. (The batch size is also known as "bucket size".) Let the current batch
99- *number be b_current, starting with 1. For each element e we either
100- *increment its f count, if it's already in D, or insert a new triple into D
101- *with values (e, 1, b_current - 1). After processing each batch we prune D,
102- *by removing from it all elements with f + d <= b_current. Finally, we
103- *gather elements with largest f. The LC paper proves error bounds on f
104- *dependent on the batch size w, and shows that the required table size
105- *is no more than a few times w.
95+ *Let s be the threshold frequency for an item (the minimum frequency we
96+ *are interested in) and epsilon the error margin for the frequency. Let D
97+ *be a set of triples (e, f, delta), where e is an element value, f is that
98+ *element's frequency (actually, its current occurrence count) and delta is
99+ *the maximum error in f. We start with D empty and process the elements in
100+ *batches of size w. (The batch size is also known as "bucket size" and is
101+ *equal to 1/epsilon.) Let the current batch number be b_current, starting
102+ *with 1. For each element e we either increment its f count, if it's
103+ *already in D, or insert a new triple into D with values (e, 1, b_current
104+ *- 1). After processing each batch we prune D, by removing from it all
105+ *elements with f + delta <= b_current. After the algorithm finishes we
106+ *suppress all elements from D that do not satisfy f >= (s - epsilon) * N,
107+ *where N is the total number of elements in the input. We emit the
108+ *remaining elements with estimated frequency f/N. The LC paper proves
109+ *that this algorithm finds all elements with true frequency at least s,
110+ *and that no frequency is overestimated or is underestimated by more than
111+ *epsilon. Furthermore, given reasonable assumptions about the input
112+ *distribution, the required table size is no more than about 7 times w.
106113 *
107- *We use a hashtable for the D structure and a bucket width of
108- *statistics_target * 10, where 10 is an arbitrarily chosen constant,
109- *meant to approximate the number of lexemes in a single tsvector.
114+ *We set s to be the estimated frequency of the K'th word in a natural
115+ *language's frequency table, where K is the target number of entries in
116+ *the MCELEM array plus an arbitrary constant, meant to reflect the fact
117+ *that the most common words in any language would usually be stopwords
118+ *so we will not actually see them in the input. We assume that the
119+ *distribution of word frequencies (including the stopwords) follows Zipf's
120+ *law with an exponent of 1.
121+ *
122+ *Assuming Zipfian distribution, the frequency of the K'th word is equal
123+ *to 1/(K * H(W)) where H(n) is 1/2 + 1/3 + ... + 1/n and W is the number of
124+ *words in the language. Putting W as one million, we get roughly 0.07/K.
125+ *Assuming top 10 words are stopwords gives s = 0.07/(K + 10). We set
126+ *epsilon = s/10, which gives bucket width w = (K + 10)/0.007 and
127+ *maximum expected hashtable size of about 1000 * (K + 10).
128+ *
129+ *Note: in the above discussion, s, epsilon, and f/N are in terms of a
130+ *lexeme's frequency as a fraction of all lexemes seen in the input.
131+ *However, what we actually want to store in the finished pg_statistic
132+ *entry is each lexeme's frequency as a fraction of all rows that it occurs
133+ *in. Assuming that the input tsvectors are correctly constructed, no
134+ *lexeme occurs more than once per tsvector, so the final count f is a
135+ *correct estimate of the number of input tsvectors it occurs in, and we
136+ *need only change the divisor from N to nonnull_cnt to get the number we
137+ *want.
110138 */
111139static void
112140compute_tsvector_stats (VacAttrStats * stats ,
@@ -133,19 +161,23 @@ compute_tsvector_stats(VacAttrStats *stats,
133161LexemeHashKey hash_key ;
134162TrackItem * item ;
135163
136- /* We want statistics_target * 10 lexemes in the MCELEM array */
164+ /*
165+ * We want statistics_target * 10 lexemes in the MCELEM array. This
166+ * multiplier is pretty arbitrary, but is meant to reflect the fact that
167+ * the number of individual lexeme values tracked in pg_statistic ought
168+ * to be more than the number of values for a simple scalar column.
169+ */
137170num_mcelem = stats -> attr -> attstattarget * 10 ;
138171
139172/*
140- * We set bucket width equal to the target number of result lexemes. This
141- * is probably about right but perhaps might need to be scaled up or down
142- * a bit?
173+ * We set bucket width equal to (num_mcelem + 10) / 0.007 as per the
174+ * comment above.
143175 */
144- bucket_width = num_mcelem ;
176+ bucket_width = ( num_mcelem + 10 ) * 1000 / 7 ;
145177
146178/*
147179 * Create the hashtable. It will be in local memory, so we don't need to
148- * worry aboutinitial size too much . Also we don't need to pay any
180+ * worry aboutoverflowing the initial size . Also we don't need to pay any
149181 * attention to locking and memory management.
150182 */
151183MemSet (& hash_ctl ,0 ,sizeof (hash_ctl ));
@@ -155,13 +187,13 @@ compute_tsvector_stats(VacAttrStats *stats,
155187hash_ctl .match = lexeme_match ;
156188hash_ctl .hcxt = CurrentMemoryContext ;
157189lexemes_tab = hash_create ("Analyzed lexemes table" ,
158- bucket_width * 4 ,
190+ bucket_width * 7 ,
159191& hash_ctl ,
160192HASH_ELEM |HASH_FUNCTION |HASH_COMPARE |HASH_CONTEXT );
161193
162194/* Initialize counters. */
163195b_current = 1 ;
164- lexeme_no = 1 ;
196+ lexeme_no = 0 ;
165197
166198/* Loop over the tsvectors. */
167199for (vector_no = 0 ;vector_no < samplerows ;vector_no ++ )
@@ -232,6 +264,9 @@ compute_tsvector_stats(VacAttrStats *stats,
232264item -> delta = b_current - 1 ;
233265}
234266
267+ /* lexeme_no is the number of elements processed (ie N) */
268+ lexeme_no ++ ;
269+
235270/* We prune the D structure after processing each bucket */
236271if (lexeme_no %bucket_width == 0 )
237272{
@@ -240,7 +275,6 @@ compute_tsvector_stats(VacAttrStats *stats,
240275}
241276
242277/* Advance to the next WordEntry in the tsvector */
243- lexeme_no ++ ;
244278curentryptr ++ ;
245279}
246280}
@@ -252,6 +286,7 @@ compute_tsvector_stats(VacAttrStats *stats,
252286int i ;
253287TrackItem * * sort_table ;
254288int track_len ;
289+ int cutoff_freq ;
255290int minfreq ,
256291maxfreq ;
257292
@@ -264,34 +299,51 @@ compute_tsvector_stats(VacAttrStats *stats,
264299stats -> stadistinct = -1.0 ;
265300
266301/*
267- * Determine the top-N lexemes by simply copying pointers from the
268- * hashtable into an array and applying qsort()
302+ * Construct an array of the interesting hashtable items, that is,
303+ * those meeting the cutoff frequency (s - epsilon)*N. Also identify
304+ * the minimum and maximum frequencies among these items.
305+ *
306+ * Since epsilon = s/10 and bucket_width = 1/epsilon, the cutoff
307+ * frequency is 9*N / bucket_width.
269308 */
270- track_len = hash_get_num_entries ( lexemes_tab ) ;
309+ cutoff_freq = 9 * lexeme_no / bucket_width ;
271310
272- sort_table = (TrackItem * * )palloc (sizeof (TrackItem * )* track_len );
311+ i = hash_get_num_entries (lexemes_tab );/* surely enough space */
312+ sort_table = (TrackItem * * )palloc (sizeof (TrackItem * )* i );
273313
274314hash_seq_init (& scan_status ,lexemes_tab );
275- i = 0 ;
315+ track_len = 0 ;
316+ minfreq = lexeme_no ;
317+ maxfreq = 0 ;
276318while ((item = (TrackItem * )hash_seq_search (& scan_status ))!= NULL )
277319{
278- sort_table [i ++ ]= item ;
320+ if (item -> frequency > cutoff_freq )
321+ {
322+ sort_table [track_len ++ ]= item ;
323+ minfreq = Min (minfreq ,item -> frequency );
324+ maxfreq = Max (maxfreq ,item -> frequency );
325+ }
279326}
280- Assert (i == track_len );
327+ Assert (track_len <= i );
281328
282- qsort (sort_table ,track_len ,sizeof (TrackItem * ),
283- trackitem_compare_frequencies_desc );
329+ /* emit some statistics for debug purposes */
330+ elog (DEBUG3 ,"tsvector_stats: target # mces = %d, bucket width = %d, "
331+ "# lexemes = %d, hashtable size = %d, usable entries = %d" ,
332+ num_mcelem ,bucket_width ,lexeme_no ,i ,track_len );
284333
285- /* Suppress any single-occurrence items */
286- while (track_len > 0 )
334+ /*
335+ * If we obtained more lexemes than we really want, get rid of
336+ * those with least frequencies. The easiest way is to qsort the
337+ * array into descending frequency order and truncate the array.
338+ */
339+ if (num_mcelem < track_len )
287340{
288- if (sort_table [track_len - 1 ]-> frequency > 1 )
289- break ;
290- track_len -- ;
341+ qsort (sort_table ,track_len ,sizeof (TrackItem * ),
342+ trackitem_compare_frequencies_desc );
343+ /* reset minfreq to the smallest frequency we're keeping */
344+ minfreq = sort_table [num_mcelem - 1 ]-> frequency ;
291345}
292-
293- /* Determine the number of most common lexemes to be stored */
294- if (num_mcelem > track_len )
346+ else
295347num_mcelem = track_len ;
296348
297349/* Generate MCELEM slot entry */
@@ -301,10 +353,6 @@ compute_tsvector_stats(VacAttrStats *stats,
301353Datum * mcelem_values ;
302354float4 * mcelem_freqs ;
303355
304- /* Grab the minimal and maximal frequencies that will get stored */
305- minfreq = sort_table [num_mcelem - 1 ]-> frequency ;
306- maxfreq = sort_table [0 ]-> frequency ;
307-
308356/*
309357 * We want to store statistics sorted on the lexeme value using
310358 * first length, then byte-for-byte comparison. The reason for
@@ -334,6 +382,10 @@ compute_tsvector_stats(VacAttrStats *stats,
334382mcelem_values = (Datum * )palloc (num_mcelem * sizeof (Datum ));
335383mcelem_freqs = (float4 * )palloc ((num_mcelem + 2 )* sizeof (float4 ));
336384
385+ /*
386+ * See comments above about use of nonnull_cnt as the divisor
387+ * for the final frequency estimates.
388+ */
337389for (i = 0 ;i < num_mcelem ;i ++ )
338390{
339391TrackItem * item = sort_table [i ];