Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit234d508

Browse files
committed
Add documentation on how statistics are used by the planner.
Mark Kirkwood
1 parent4f51368 commit234d508

File tree

3 files changed

+374
-2
lines changed

3 files changed

+374
-2
lines changed

‎doc/src/sgml/filelist.sgml

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
<!-- $PostgreSQL: pgsql/doc/src/sgml/filelist.sgml,v 1.42 2005/02/13 03:04:15 tgl Exp $ -->
1+
<!-- $PostgreSQL: pgsql/doc/src/sgml/filelist.sgml,v 1.43 2005/02/27 00:49:28 momjian Exp $ -->
22

33
<!entity history SYSTEM "history.sgml">
44
<!entity info SYSTEM "info.sgml">
@@ -77,6 +77,7 @@
7777
<!entity catalogs SYSTEM "catalogs.sgml">
7878
<!entity geqo SYSTEM "geqo.sgml">
7979
<!entity gist SYSTEM "gist.sgml">
80+
<!entity planstats SYSTEM "planstats.sgml">
8081
<!entity indexam SYSTEM "indexam.sgml">
8182
<!entity nls SYSTEM "nls.sgml">
8283
<!entity plhandler SYSTEM "plhandler.sgml">

‎doc/src/sgml/planstats.sgml

Lines changed: 370 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,370 @@
1+
<!--
2+
$PostgreSQL: pgsql/doc/src/sgml/planstats.sgml,v 1.1 2005/02/27 00:49:28 momjian Exp $
3+
-->
4+
5+
<chapter id="planner-stats">
6+
<title>How the Planner Uses Statistics</title>
7+
8+
<para>
9+
This chapter builds on the material covered in <xref linkend="using-explain">
10+
and <xref linkend="planner-stats">, and shows how the planner uses the
11+
system statistics to estimate the number of rows each stage in a query might
12+
return. This is a significant part of the planning / optimizing process,
13+
providing much of the raw material for cost calculation.
14+
</para>
15+
16+
<para>
17+
The intent of this chapter is not to document the code &mdash;
18+
better done in the code itself, but to present an overview of how it works.
19+
This will perhaps ease the learning curve for someone who subsequently
20+
wishes to read the code. As a consequence, the approach chosen is to analyze
21+
a series of incrementally more complex examples.
22+
</para>
23+
24+
<para>
25+
The outputs and algorithms shown below are taken from version 8.0.
26+
The behaviour of earlier (or later) versions may vary.
27+
</para>
28+
29+
<sect1 id="row-estimation-examples">
30+
<title>Row Estimation Examples</title>
31+
32+
<indexterm zone="row-estimation-examples">
33+
<primary>row estimation</primary>
34+
<secondary>planner</secondary>
35+
</indexterm>
36+
37+
<para>
38+
Using examples drawn from the regression test database, let's start with a
39+
very simple query:
40+
<programlisting>
41+
EXPLAIN SELECT * FROM tenk1;
42+
43+
QUERY PLAN
44+
-------------------------------------------------------------
45+
Seq Scan on tenk1 (cost=0.00..445.00 rows=10000 width=244)
46+
</programlisting>
47+
48+
How the planner determines the cardinality of <classname>tenk1</classname>
49+
is covered in <xref linkend="using-explain">, but is repeated here for
50+
completeness. The number of rows is looked up from
51+
<classname>pg_class</classname>:
52+
53+
<programlisting>
54+
SELECT reltuples, relpages FROM pg_class WHERE relname = 'tenk1';
55+
56+
relpages | reltuples
57+
----------+-----------
58+
345 | 10000
59+
</programlisting>
60+
The planner will check the <structfield>relpages<structfield> estimate
61+
(this is a cheap operation) and if incorrect may scale
62+
<structfield>reltuples<structfield> to obtain a row estimate. In this case it
63+
does not, thus:
64+
65+
<programlisting>
66+
rows = 10000
67+
</programlisting>
68+
69+
</para>
70+
71+
<para>
72+
let's move on to an example with a range condition in its
73+
<literal>WHERE</literal> clause:
74+
75+
<programlisting>
76+
EXPLAIN SELECT * FROM tenk1 WHERE unique1 &lt; 1000;
77+
78+
QUERY PLAN
79+
------------------------------------------------------------
80+
Seq Scan on tenk1 (cost=0.00..470.00 rows=1031 width=244)
81+
Filter: (unique1 &lt; 1000)
82+
</programlisting>
83+
84+
The planner examines the <literal>WHERE</literal> clause condition:
85+
86+
<programlisting>
87+
unique1 &lt; 1000
88+
</programlisting>
89+
90+
and looks up the restriction function for the operator
91+
<literal>&lt;</literal> in <classname>pg_operator</classname>.
92+
This is held in the column <structfield>oprrest</structfield>,
93+
and the result in this case is <function>scalarltsel</function>.
94+
The <function>scalarltsel</function> function retrieves the histogram for
95+
<structfield>unique1</structfield> from <classname>pg_statistics</classname>
96+
- we can follow this by using the simpler <classname>pg_stats</classname>
97+
view:
98+
99+
<programlisting>
100+
SELECT histogram_bounds FROM pg_stats
101+
WHERE tablename='tenk1' AND attname='unique1';
102+
103+
histogram_bounds
104+
------------------------------------------------------
105+
{1,970,1943,2958,3971,5069,6028,7007,7919,8982,9995}
106+
</programlisting>
107+
108+
Next the fraction of the histogram occupied by <quote>&lt; 1000</quote>
109+
is worked out. This is the selectivity. The histogram divides the range
110+
into equal frequency buckets, so all we have to do is locate the bucket
111+
that our value is in and count <emphasis>part</emphasis> of it and
112+
<emphasis>all</emphasis> of the ones before. The value 1000 is clearly in
113+
the second (970 - 1943) bucket, so by assuming a linear distribution of
114+
values inside each bucket we can calculate the selectivity as:
115+
116+
<programlisting>
117+
selectivity = (1 + (1000 - bckt[2].min)/(bckt[2].max - bckt[2].min))/num_bckts
118+
= (1 + (1000 - 970)/(1943 - 970))/10
119+
= 0.1031
120+
</programlisting>
121+
122+
that is, one whole bucket plus a linear fraction of the second, divided by
123+
the number of buckets. The estimated number of rows can now be calculated as
124+
the product of the selectivity and the cardinality of
125+
<classname>tenk1</classname>:
126+
127+
<programlisting>
128+
rows = rel_cardinality * selectivity
129+
= 10000 * 0.1031
130+
= 1031
131+
</programlisting>
132+
133+
</para>
134+
135+
<para>
136+
Next let's consider an example with equality condition in its
137+
<literal>WHERE</literal> clause:
138+
139+
<programlisting>
140+
EXPLAIN SELECT * FROM tenk1 WHERE stringu1 = 'ATAAAA';
141+
142+
QUERY PLAN
143+
----------------------------------------------------------
144+
Seq Scan on tenk1 (cost=0.00..470.00 rows=31 width=244)
145+
Filter: (stringu1 = 'ATAAAA'::name)
146+
</programlisting>
147+
148+
Again the planner examines the <literal>WHERE</literal> clause condition:
149+
150+
<programlisting>
151+
stringu1 = 'ATAAAA'
152+
</programlisting>
153+
154+
and looks up the restriction function for <literal>=</literal>, which is
155+
<function>eqsel</function>. This case is a bit different, as the most
156+
common values &mdash; <acronym>MCV</acronym>s, are used to determine the
157+
selectivity. Let's have a look at these, with some extra columns that will
158+
be useful later:
159+
160+
<programlisting>
161+
SELECT null_frac, n_distinct, most_common_vals, most_common_freqs FROM pg_stats
162+
WHERE tablename='tenk1' AND attname='stringu1';
163+
164+
null_frac | 0
165+
n_distinct | 672
166+
most_common_vals | {FDAAAA,NHAAAA,ATAAAA,BGAAAA,EBAAAA,MOAAAA,NDAAAA,OWAAAA,BHAAAA,BJAAAA}
167+
most_common_freqs | {0.00333333,0.00333333,0.003,0.003,0.003,0.003,0.003,0.003,0.00266667,0.00266667}
168+
</programlisting>
169+
170+
The selectivity is merely the most common frequency (<acronym>MCF</acronym>)
171+
corresponding to the third <acronym>MCV</acronym> &mdash; 'ATAAAA':
172+
173+
<programlisting>
174+
selectivity = mcf[3]
175+
= 0.003
176+
</programlisting>
177+
178+
The estimated number of rows is just the product of this with the
179+
cardinality of <classname>tenk1</classname> as before:
180+
181+
<programlisting>
182+
rows = 10000 * 0.003
183+
= 30
184+
</programlisting>
185+
186+
The number displayed by <command>EXPLAIN</command> is one more than this,
187+
due to some post estimation checks.
188+
</para>
189+
190+
<para>
191+
Now consider the same query, but with a constant that is not in the
192+
<acronym>MCV</acronym> list:
193+
194+
<programlisting>
195+
EXPLAIN SELECT * FROM tenk1 WHERE stringu1 = 'xxx';
196+
197+
QUERY PLAN
198+
----------------------------------------------------------
199+
Seq Scan on tenk1 (cost=0.00..470.00 rows=15 width=244)
200+
Filter: (stringu1 = 'xxx'::name)
201+
</programlisting>
202+
203+
This is quite a different problem, how to estimate the selectivity when the
204+
value is <emphasis>not</emphasis> in the <acronym>MCV</acronym> list.
205+
The approach is to use the fact that the value is not in the list,
206+
combined with the knowledge of the frequencies for all of the
207+
<acronym>MCV</acronym>s:
208+
209+
<programlisting>
210+
selectivity = (1 - sum(mvf))/(num_distinct - num_mcv)
211+
= (1 - (0.00333333 + 0.00333333 + 0.003 + 0.003 + 0.003
212+
+ 0.003 + 0.003 + 0.003 + 0.00266667 + 0.00266667))/(672 - 10)
213+
= 0.001465
214+
</programlisting>
215+
216+
That is, add up all the frequencies for the <acronym>MCV</acronym>s and
217+
subtract them from one &mdash; because it is <emphasis>not</emphasis> one
218+
of these, and divide by the <emphasis>remaining</emphasis> distinct values.
219+
Notice that there are no null values so we don't have to worry about those.
220+
The estimated number of rows is calculated as usual:
221+
222+
<programlisting>
223+
rows = 10000 * 0.001465
224+
= 15
225+
</programlisting>
226+
227+
</para>
228+
229+
<para>
230+
Let's increase the complexity to consider a case with more than one
231+
condition in the <literal>WHERE</literal> clause:
232+
233+
<programlisting>
234+
EXPLAIN SELECT * FROM tenk1 WHERE unique1 &lt; 1000 AND stringu1 = 'xxx';
235+
236+
QUERY PLAN
237+
-----------------------------------------------------------
238+
Seq Scan on tenk1 (cost=0.00..495.00 rows=2 width=244)
239+
Filter: ((unique1 &lt; 1000) AND (stringu1 = 'xxx'::name))
240+
</programlisting>
241+
242+
An assumption of independence is made and the selectivities of the
243+
individual restrictions are multiplied together:
244+
245+
<programlisting>
246+
selectivity = selectivity(unique1 &lt; 1000) * selectivity(stringu1 = 'xxx')
247+
= 0.1031 * 0.001465
248+
= 0.00015104
249+
</programlisting>
250+
251+
The row estimates are calculated as before:
252+
253+
<programlisting>
254+
rows = 10000 * 0.00015104
255+
= 2
256+
</programlisting>
257+
</para>
258+
259+
<para>
260+
Finally we will examine a query that includes a <literal>JOIN</literal>
261+
together with a <literal>WHERE</literal> clause:
262+
263+
<programlisting>
264+
EXPLAIN SELECT * FROM tenk1 t1, tenk2 t2
265+
WHERE t1.unique1 &lt; 50 AND t1.unique2 = t2.unique2;
266+
267+
QUERY PLAN
268+
-----------------------------------------------------------------------------------------
269+
Nested Loop (cost=0.00..346.90 rows=51 width=488)
270+
-> Index Scan using tenk1_unique1 on tenk1 t1 (cost=0.00..192.57 rows=51 width=244)
271+
Index Cond: (unique1 &lt; 50)
272+
-> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.00..3.01 rows=1 width=244)
273+
Index Cond: ("outer".unique2 = t2.unique2)
274+
</programlisting>
275+
276+
The restriction on <classname>tenk1</classname>
277+
<quote>unique1 &lt; 50</quote> is evaluated before the nested-loop join.
278+
This is handled analogously to the previous range example. The restriction
279+
operator for <literal>&lt;</literal> is <function>scalarlteqsel</function>
280+
as before, but this time the value 50 is in the first bucket of the
281+
<structfield>unique1</structfield> histogram:
282+
283+
<programlisting>
284+
selectivity = (0 + (50 - bckt[1].min)/(bckt[1].max - bckt[1].min))/num_bckts
285+
= (0 + (50 - 1)/(970 - 1))/10
286+
= 0.005057
287+
288+
rows = 10000 * 0.005057
289+
= 51
290+
</programlisting>
291+
292+
The restriction for the join is:
293+
294+
<programlisting>
295+
t2.unique2 = t1.unique2
296+
</programlisting>
297+
298+
This is due to the join method being nested-loop, with
299+
<classname>tenk1</classname> being in the outer loop. The operator is just
300+
our familiar <literal>=<literal>, however the restriction function is
301+
obtained from the <structfield>oprjoin</structfield> column of
302+
<classname>pg_operator</classname> - and is <function>eqjoinsel</function>.
303+
Additionally we use the statistical information for both
304+
<classname>tenk2</classname> and <classname>tenk1</classname>:
305+
306+
<programlisting>
307+
SELECT tablename, null_frac,n_distinct, most_common_vals FROM pg_stats
308+
WHERE tablename IN ('tenk1', 'tenk2') AND attname='unique2';
309+
310+
tablename | null_frac | n_distinct | most_common_vals
311+
-----------+-----------+------------+------------------
312+
tenk1 | 0 | -1 |
313+
tenk2 | 0 | -1 |
314+
</programlisting>
315+
316+
In this case there is no <acronym>MCV</acronym> information for
317+
<structfield>unique2</structfield> because all the values appear to be
318+
unique, so we can use an algorithm that relies only on the number of
319+
distinct values for both relations together with their null fractions:
320+
321+
<programlisting>
322+
selectivity = (1 - null_frac1) * (1 - null_frac2) * min(1/num_distinct1, 1/num_distinct2)
323+
= (1 - 0) * (1 - 0) * min(1/10000, 1/1000)
324+
= 0.0001
325+
</programlisting>
326+
327+
This is, subtract the null fraction from one for each of the relations,
328+
and divide by the maximum of the two distinct values. The number of rows
329+
that the join is likely to emit is calculated as the cardinality of
330+
cartesian product of the two nodes in the nested-loop, multiplied by the
331+
selectivity:
332+
333+
<programlisting>
334+
rows = (outer_cardinality * inner_cardinality) * selectivity
335+
= (51 * 10000) * 0.0001
336+
= 51
337+
</programlisting>
338+
</para>
339+
340+
<para>
341+
For those interested in further details, estimation of the number of rows in
342+
a relation is covered in
343+
<filename>src/backend/optimizer/util/plancat.c</filename>. The calculation
344+
logic for clause selectivities is in
345+
<filename>src/backend/optimizer/path/clausesel.c</filename>. The actual
346+
implementations of the operator and join restriction functions can be found
347+
in <filename>src/backend/utils/adt/selfuncs.c</filename>.
348+
</para>
349+
350+
</sect1>
351+
352+
353+
</chapter>
354+
355+
<!-- Keep this comment at the end of the file
356+
Local variables:
357+
mode:sgml
358+
sgml-omittag:nil
359+
sgml-shorttag:t
360+
sgml-minimize-attributes:nil
361+
sgml-always-quote-attributes:t
362+
sgml-indent-step:1
363+
sgml-indent-data:t
364+
sgml-parent-document:nil
365+
sgml-default-dtd-file:"./reference.ced"
366+
sgml-exposed-tags:nil
367+
sgml-local-catalogs:("/usr/lib/sgml/catalog")
368+
sgml-local-ecat-files:nil
369+
End:
370+
-->

‎doc/src/sgml/postgres.sgml

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
<!--
2-
$PostgreSQL: pgsql/doc/src/sgml/postgres.sgml,v 1.74 2005/02/13 03:04:15 tgl Exp $
2+
$PostgreSQL: pgsql/doc/src/sgml/postgres.sgml,v 1.75 2005/02/27 00:49:28 momjian Exp $
33
-->
44

55
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook V4.2//EN" [
@@ -239,6 +239,7 @@ $PostgreSQL: pgsql/doc/src/sgml/postgres.sgml,v 1.74 2005/02/13 03:04:15 tgl Exp
239239
&gist;
240240
&storage;
241241
&bki;
242+
&planstats;
242243

243244
</part>
244245

0 commit comments

Comments
 (0)

[8]ページ先頭

©2009-2025 Movatter.jp