Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit303a9d9

Browse files
committed
Add reliability into the ML model.
1 parent41f8c7a commit303a9d9

File tree

1 file changed

+29
-6
lines changed

1 file changed

+29
-6
lines changed

‎machine_learning.c

Lines changed: 29 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -181,9 +181,21 @@ OkNNr_learn(OkNNrdata *data, double *features, double target, double rfactor)
181181
*/
182182
if (data->rows>0&&distances[mid]<object_selection_threshold)
183183
{
184+
doublelr=learning_rate*rfactor /data->rfactors[mid];
185+
186+
if (lr>1.)
187+
{
188+
elog(WARNING,"[AQO] Something goes wrong in the ML core: learning rate = %lf",lr);
189+
lr=1.;
190+
}
191+
192+
Assert(lr>0.);
193+
Assert(data->rfactors[mid]>0.&&data->rfactors[mid] <=1.);
194+
184195
for (j=0;j<data->cols;++j)
185-
data->matrix[mid][j]+=learning_rate* (features[j]-data->matrix[mid][j]);
186-
data->targets[mid]+=learning_rate* (target-data->targets[mid]);
196+
data->matrix[mid][j]+=lr* (features[j]-data->matrix[mid][j]);
197+
data->targets[mid]+=lr* (target-data->targets[mid]);
198+
data->rfactors[mid]+=lr* (rfactor-data->rfactors[mid]);
187199

188200
returndata->rows;
189201
}
@@ -229,7 +241,7 @@ OkNNr_learn(OkNNrdata *data, double *features, double target, double rfactor)
229241
* Compute average value for target by nearest neighbors. We need to
230242
* check idx[i] != -1 because we may have smaller value of nearest
231243
* neighbors than aqo_k.
232-
* Semantics ofcoef1: it is defined distance between new object and
244+
* Semantics oftc_coef: it is defined distance between new object and
233245
* this superposition value (with linear smoothing).
234246
* fc_coef - feature changing rate.
235247
* */
@@ -240,10 +252,21 @@ OkNNr_learn(OkNNrdata *data, double *features, double target, double rfactor)
240252
/* Modify targets and features of each nearest neighbor row. */
241253
for (i=0;i<aqo_k&&idx[i]!=-1;++i)
242254
{
243-
fc_coef=tc_coef* (data->targets[idx[i]]-avg_target)*w[i]*w[i] /
244-
sqrt(data->cols) /w_sum;
255+
doublelr=learning_rate*rfactor /data->rfactors[mid];
256+
257+
if (lr>1.)
258+
{
259+
elog(WARNING,"[AQO] Something goes wrong in the ML core: learning rate = %lf",lr);
260+
lr=1.;
261+
}
262+
263+
Assert(lr>0.);
264+
Assert(data->rfactors[mid]>0.&&data->rfactors[mid] <=1.);
265+
266+
fc_coef=tc_coef*lr* (data->targets[idx[i]]-avg_target)*
267+
w[i]*w[i] /sqrt(data->cols) /w_sum;
245268

246-
data->targets[idx[i]]-=tc_coef*w[i] /w_sum;
269+
data->targets[idx[i]]-=tc_coef*lr*w[i] /w_sum;
247270
for (j=0;j<data->cols;++j)
248271
{
249272
feature=data->matrix[idx[i]];

0 commit comments

Comments
 (0)

[8]ページ先頭

©2009-2025 Movatter.jp