Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit048f078

Browse files
committed
Some small cleanup
1 parent1d3fde6 commit048f078

File tree

3 files changed

+8
-6
lines changed

3 files changed

+8
-6
lines changed

‎.gitignore

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,2 @@
1+
venv
2+
lsp-ai-chat.md

‎README.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -44,7 +44,7 @@ results = Document.vector_search("text_embedding", "some query to search against
4444

4545
###Example 2: Using mixedbread-ai/mxbai-embed-large-v1
4646

47-
This example shows how to use the`mixedbread-ai/mxbai-embed-large-v1` transformer, which has an embedding size of512 and requires specific parameters for recall.
47+
This example shows how to use the`mixedbread-ai/mxbai-embed-large-v1` transformer, which has an embedding size of1024 and requires specific parameters for recall.
4848

4949
```python
5050
from django.dbimport models
@@ -54,19 +54,19 @@ class Article(Embed):
5454
content= models.TextField()
5555
content_embedding= VectorField(
5656
field_to_embed="content",
57-
dimensions=512,
57+
dimensions=1024,
5858
transformer="mixedbread-ai/mxbai-embed-large-v1",
5959
transformer_recall_parameters={
60-
"query":"Represent this sentence for searching relevant passages:"
60+
"prompt":"Represent this sentence for searching relevant passages:"
6161
}
6262
)
6363

6464
# Searching
65-
results= Article.vector_search("content_embedding","search query")
65+
results= Article.vector_search("content_embedding","some query to search against")
6666
```
6767

6868
Note the differences between the two examples:
69-
1. The`dimensions` parameter is set to 384 for`intfloat/e5-small-v2` and512 for`mixedbread-ai/mxbai-embed-large-v1`.
69+
1. The`dimensions` parameter is set to 384 for`intfloat/e5-small-v2` and1024 for`mixedbread-ai/mxbai-embed-large-v1`.
7070
2. The`mixedbread-ai/mxbai-embed-large-v1` transformer requires additional parameters for recall, which are specified in the`transformer_recall_parameters` argument.
7171

7272
Both examples will automatically generate embeddings when instances are saved and allow for vector similarity searches using the`vector_search` method.

‎src/postgresml_django/main.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -61,7 +61,7 @@ def vector_search(
6161
# Generate an embedding for the text
6262
query_embedding=GenerateEmbedding(
6363
Value(query_text),
64-
"intfloat/e5-small-v2",
64+
field_instance.transformer,
6565
field_instance.transformer_recall_parameters,
6666
)
6767

0 commit comments

Comments
 (0)

[8]ページ先頭

©2009-2025 Movatter.jp