You signed in with another tab or window.Reload to refresh your session.You signed out in another tab or window.Reload to refresh your session.You switched accounts on another tab or window.Reload to refresh your session.Dismiss alert
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.Learn more about bidirectional Unicode characters
A common problem with data science and machine learning tutorials is the published and studieddata sets are often nothing like what you’ll find in industry.
A common problem with data science and machine learning tutorials is the published and studieddatasets are often nothing like what you’ll find in industry.
<center markdown>
Expand All
@@ -42,11 +42,11 @@ They are:
- usually denormalized into a single tabular form, e.g. a CSV file
- often relatively tiny to medium amounts of data, not big data
- always static, with new rows never added
- sometimespre-treated to clean or simplify the data
- sometimespretreated to clean or simplify the data
As Data Science transitions from academia into industry, these norms influence organizations and applications. Professional Data Scientists need teams of Data Engineers to move data from production databases into data warehouses and denormalized schemas which are more familiar, and ideally easier to work with. Large offline batch jobs are a typical integration point between Data Scientists and their Engineering counterparts, who primarily deal with online systems. As the systems grow more complex, additional specialized Machine Learning Engineers are required to optimize performance and scalability bottlenecks between databases, warehouses, models and applications.
As Data Science transitions from academia into industry, these norms influence organizations and applications. Professional Data Scientists need teams of Data Engineers to move data from production databases into data warehouses and denormalized schemas, which are more familiar and ideally easier to work with. Large offline batch jobs are a typical integration point between Data Scientists and their Engineering counterparts, who primarily deal with online systems. As the systems grow more complex, additional specialized Machine Learning Engineers are required to optimize performance and scalability bottlenecks between databases, warehouses, models and applications.
This eventually leads to expensive maintenance andtoterminal complexity: new improvements to the system become exponentially more difficult. Ultimately, previously working models start getting replaced by simpler solutions, so the business can continue to iterate. This is not a new phenomenon, see the fate of the Netflix Prize.
This eventually leads to expensive maintenance and terminal complexity: new improvements to the system become exponentially more difficult. Ultimately, previously working models start getting replaced by simpler solutions, so the business can continue to iterate. This is not a new phenomenon, see the fate of the Netflix Prize.
Announcing the PostgresML Gym 🎉
-------------------------------
Expand All
@@ -55,17 +55,17 @@ Instead of starting from the academic perspective that data is dead, PostgresML

Relationa data:
Relational data:
- is normalized for real time performance and correctness considerations
- has new rows added and updated constantly, which formtheincomplete features for a prediction
- has new rows added and updated constantly, which form incomplete features for a prediction
Meanwhile, denormalizeddata sets:
Meanwhile, denormalizeddatasets:
- may grow to billions of rows, where single updatesmultiple into mass rewrites
- often span multiple iterations of the schema,where software bugsleave behind outliers
- may grow to billions of rows, where single updatesmultiply into mass rewrites
- often span multiple iterations of the schema,with software bugsleaving behind outliers
We think it’s worth attempting to move the machine learning process and modern data architectures beyond the status quo. To that end, we’re building the PostgresML Gym, a free offering, to provide a test bed for real world ML experimentation in a Postgres database. Your personal Gym will include the PostgresML dashboard, several tutorial notebooks to get you started, and access to your own personal PostgreSQL database, supercharged with our machine learning extension.
We think it’s worth attempting to move the machine learning process and modern data architectures beyond the status quo. To that end, we’re building the PostgresML Gym, a free offering, to provide a test bed for real world ML experimentation, in a Postgres database. Your personal Gym will include the PostgresML dashboard, several tutorial notebooks to get you started, and access to your own personal PostgreSQL database, supercharged with our machine learning extension.
Add this suggestion to a batch that can be applied as a single commit.This suggestion is invalid because no changes were made to the code.Suggestions cannot be applied while the pull request is closed.Suggestions cannot be applied while viewing a subset of changes.Only one suggestion per line can be applied in a batch.Add this suggestion to a batch that can be applied as a single commit.Applying suggestions on deleted lines is not supported.You must change the existing code in this line in order to create a valid suggestion.Outdated suggestions cannot be applied.This suggestion has been applied or marked resolved.Suggestions cannot be applied from pending reviews.Suggestions cannot be applied on multi-line comments.Suggestions cannot be applied while the pull request is queued to merge.Suggestion cannot be applied right now. Please check back later.