Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Initial_audit_changes#1436

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to ourterms of service andprivacy statement. We’ll occasionally send you account related emails.

Already on GitHub?Sign in to your account

Open
craigmoore1 wants to merge5 commits intopostgresml:master
base:master
Choose a base branch
Loading
fromcraigmoore1:initial-edit-docs-from-audit
Open
Show file tree
Hide file tree
Changes from1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
PrevPrevious commit
NextNext commit
Update based on feedback
Fix a missing ending para and remove blank targets.
  • Loading branch information
@craigmoore1
craigmoore1 committedMay 3, 2024
commitafd202f92d435d25fe6652625d9fc32d24f62e76
2 changes: 1 addition & 1 deletionpgml-cms/docs/api/sql-extension/pgml.train/README.md
View file
Open in desktop
Original file line numberDiff line numberDiff line change
Expand Up@@ -37,7 +37,7 @@ pgml.train(
| `task` | `'regression'` | The objective of the experiment: `regression`, `classification` or `cluster` |
| `relation_name` | `'public.search_logs'` | The Postgres table or view where the training data is stored or defined. |
| `y_column_name` | `'clicked'` | The name of the label (aka "target" or "unknown") column in the training table. |
| `algorithm` | `'xgboost'` | <p>The algorithm to train on the dataset. |
| `algorithm` | `'xgboost'` | <p>The algorithm to train on the dataset.</p> |
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others.Learn more.

We don't need the <p> if we're not nesting multiple links, but why remove the links?

Suggested change
|`algorithm`|`'xgboost'`|<p>The algorithm to train on the dataset.</p>|
|`algorithm`|`'xgboost'`| The algorithm to train on the dataset.|

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others.Learn more.

The links 404'ed. Do the pages still exist?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others.Learn more.

| `hyperparams` | `{ "n_estimators": 25 }` | The hyperparameters to pass to the algorithm for training, JSON formatted. |
| `search` | `grid` | If set, PostgresML will perform a hyperparameter search to find the best hyperparameters for the algorithm. See [hyperparameter-search.md](hyperparameter-search.md "mention") for details. |
| `search_params` | `{ "n_estimators": [5, 10, 25, 100] }` | Search parameters used in the hyperparameter search, using the scikit-learn notation, JSON formatted. |
Expand Down
42 changes: 21 additions & 21 deletionspgml-cms/docs/api/sql-extension/pgml.train/classification.md
View file
Open in desktop
Original file line numberDiff line numberDiff line change
Expand Up@@ -8,7 +8,7 @@ description: >-

## Example

This example trains models on the sklean digits dataset which is a copy of the test set of the [UCI ML hand-written digits datasets](https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits target="_blank"). This demonstrates using a table with a single array feature column for classification. You could do something similar with a vector column.
This example trains models on the sklean digits dataset which is a copy of the test set of the [UCI ML hand-written digits datasets](https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits). This demonstrates using a table with a single array feature column for classification. You could do something similar with a vector column.

```sql
-- load the sklearn digits dataset
Expand All@@ -33,16 +33,16 @@ LIMIT 10;

## Algorithms

We currently support classification algorithms from [scikit-learn](https://scikit-learn.org/ target="_blank"), [XGBoost](https://xgboost.readthedocs.io/ target="_blank"), [LightGBM](https://lightgbm.readthedocs.io/ target="_blank") and [Catboost](https://catboost.ai/ target="_blank").
We currently support classification algorithms from [scikit-learn](https://scikit-learn.org/), [XGBoost](https://xgboost.readthedocs.io/), [LightGBM](https://lightgbm.readthedocs.io/) and [Catboost](https://catboost.ai/).

### Gradient Boosting

| Algorithm | Reference |
| ----------------------- | -------------------------------------------------------------------------------------------------------------------------- |
| `xgboost` | [XGBClassifier](https://xgboost.readthedocs.io/en/stable/python/python\_api.html#xgboost.XGBClassifier target="_blank") |
| `xgboost_random_forest` | [XGBRFClassifier](https://xgboost.readthedocs.io/en/stable/python/python\_api.html#xgboost.XGBRFClassifier target="_blank") |
| `lightgbm` | [LGBMClassifier](https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html#lightgbm.LGBMClassifier target="_blank") |
| `catboost` | [CatBoostClassifier](https://catboost.ai/en/docs/concepts/python-reference\_catboostclassifier target="_blank") |
| `xgboost` | [XGBClassifier](https://xgboost.readthedocs.io/en/stable/python/python\_api.html#xgboost.XGBClassifier) |
| `xgboost_random_forest` | [XGBRFClassifier](https://xgboost.readthedocs.io/en/stable/python/python\_api.html#xgboost.XGBRFClassifier) |
| `lightgbm` | [LGBMClassifier](https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html#lightgbm.LGBMClassifier) |
| `catboost` | [CatBoostClassifier](https://catboost.ai/en/docs/concepts/python-reference\_catboostclassifier) |

#### Examples

Expand All@@ -57,12 +57,12 @@ SELECT * FROM pgml.train('Handwritten Digits', algorithm => 'catboost', hyperpar

| Algorithm | Reference |
| ------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------- |
| `ada_boost` | [AdaBoostClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html target="_blank") |
| `bagging` | [BaggingClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html target="_blank") |
| `extra_trees` | [ExtraTreesClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html target="_blank") |
| `gradient_boosting_trees` | [GradientBoostingClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html target="_blank") |
| `random_forest` | [RandomForestClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html target="_blank") |
| `hist_gradient_boosting` | [HistGradientBoostingClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingClassifier.html target="_blank") |
| `ada_boost` | [AdaBoostClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html) |
| `bagging` | [BaggingClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html) |
| `extra_trees` | [ExtraTreesClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html) |
| `gradient_boosting_trees` | [GradientBoostingClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html) |
| `random_forest` | [RandomForestClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html) |
| `hist_gradient_boosting` | [HistGradientBoostingClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingClassifier.html) |

#### Examples

Expand All@@ -79,9 +79,9 @@ SELECT * FROM pgml.train('Handwritten Digits', algorithm => 'hist_gradient_boost

| Algorithm | Reference |
| ------------ | ----------------------------------------------------------------------------------------- |
| `svm` | [SVC](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html target="_blank") |
| `nu_svm` | [NuSVC](https://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVC.html target="_blank") |
| `linear_svm` | [LinearSVC](https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html target="_blank") |
| `svm` | [SVC](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html) |
| `nu_svm` | [NuSVC](https://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVC.html) |
| `linear_svm` | [LinearSVC](https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html) |

#### Examples

Expand All@@ -95,11 +95,11 @@ SELECT * FROM pgml.train('Handwritten Digits', algorithm => 'linear_svm');

| Algorithm | Reference |
| ----------------------------- | --------------------------------------------------------------------------------------------------------------------------------------- |
| `linear` | [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear\_model.LogisticRegression.html target="_blank") |
| `ridge` | [RidgeClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.linear\_model.RidgeClassifier.html target="_blank") |
| `stochastic_gradient_descent` | [SGDClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.linear\_model.SGDClassifier.html target="_blank") |
| `perceptron` | [Perceptron](https://scikit-learn.org/stable/modules/generated/sklearn.linear\_model.Perceptron.html target="_blank") |
| `passive_aggressive` | [PassiveAggressiveClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.linear\_model.PassiveAggressiveClassifier.html target="_blank") |
| `linear` | [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear\_model.LogisticRegression.html) |
| `ridge` | [RidgeClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.linear\_model.RidgeClassifier.html) |
| `stochastic_gradient_descent` | [SGDClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.linear\_model.SGDClassifier.html) |
| `perceptron` | [Perceptron](https://scikit-learn.org/stable/modules/generated/sklearn.linear\_model.Perceptron.html) |
| `passive_aggressive` | [PassiveAggressiveClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.linear\_model.PassiveAggressiveClassifier.html) |

#### Examples

Expand All@@ -114,7 +114,7 @@ SELECT * FROM pgml.train('Handwritten Digits', algorithm => 'passive_aggressive'

| Algorithm | Reference |
| ------------------ | --------------------------------------------------------------------------------------------------------------------------------------- |
| `gaussian_process` | [GaussianProcessClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.gaussian\_process.GaussianProcessClassifier.html target="_blank") |
| `gaussian_process` | [GaussianProcessClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.gaussian\_process.GaussianProcessClassifier.html) |

#### Examples

Expand Down
10 changes: 5 additions & 5 deletionspgml-cms/docs/api/sql-extension/pgml.train/clustering.md
View file
Open in desktop
Original file line numberDiff line numberDiff line change
Expand Up@@ -4,7 +4,7 @@ Models can be trained using `pgml.train` on unlabeled data to identify groups wi

## Example

This example trains models on the sklearn digits dataset -- which is a copy of the test set of the [UCI ML hand-written digits datasets](https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits target="_blank"). This demonstrates using a table with a single array feature column for clustering. You could do something similar with a vector column.
This example trains models on the sklearn digits dataset -- which is a copy of the test set of the [UCI ML hand-written digits datasets](https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits). This demonstrates using a table with a single array feature column for clustering. You could do something similar with a vector column.

```sql
SELECT pgml.load_dataset('digits');
Expand All@@ -31,10 +31,10 @@ All clustering algorithms implemented by PostgresML are online versions. You may

| Algorithm | Reference |
| ---------------------- | ----------------------------------------------------------------------------------------------------------------- |
| `affinity_propagation` | [AffinityPropagation](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AffinityPropagation.html target="_blank") |
| `birch` | [Birch](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.Birch.html target="_blank") |
| `kmeans` | [K-Means](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html target="_blank") |
| `mini_batch_kmeans` | [MiniBatchKMeans](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html target="_blank") |
| `affinity_propagation` | [AffinityPropagation](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AffinityPropagation.html) |
| `birch` | [Birch](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.Birch.html) |
| `kmeans` | [K-Means](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html) |
| `mini_batch_kmeans` | [MiniBatchKMeans](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html) |

### Examples

Expand Down
Loading

[8]ページ先頭

©2009-2025 Movatter.jp