Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Removed GPTQ pipeline class#1165

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to ourterms of service andprivacy statement. We’ll occasionally send you account related emails.

Already on GitHub?Sign in to your account

Closed
SilasMarvin wants to merge1 commit intomasterfromsilas-update-gptq-support
Closed
Changes fromall commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
45 changes: 0 additions & 45 deletionspgml-extension/src/bindings/transformers/transformers.py
View file
Open in desktop
Original file line numberDiff line numberDiff line change
Expand Up@@ -119,46 +119,6 @@ def __next__(self):
return value


class GPTQPipeline(object):
def __init__(self, model_name, **task):
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
from huggingface_hub import snapshot_download

model_path = snapshot_download(model_name)

quantized_config = BaseQuantizeConfig.from_pretrained(model_path)
self.model = AutoGPTQForCausalLM.from_quantized(
model_path, quantized_config=quantized_config, **task
)
if "use_fast_tokenizer" in task:
self.tokenizer = AutoTokenizer.from_pretrained(
model_path, use_fast=task.pop("use_fast_tokenizer")
)
else:
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
self.task = "text-generation"

def stream(self, inputs, **kwargs):
streamer = TextIteratorStreamer(self.tokenizer)
inputs = self.tokenizer(inputs, return_tensors="pt").to(self.model.device)
generation_kwargs = dict(inputs, streamer=streamer, **kwargs)
thread = Thread(target=self.model.generate, kwargs=generation_kwargs)
thread.start()
return streamer

def __call__(self, inputs, **kwargs):
outputs = []
for input in inputs:
tokens = (
self.tokenizer(input, return_tensors="pt")
.to(self.model.device)
.input_ids
)
token_ids = self.model.generate(input_ids=tokens, **kwargs)[0]
outputs.append(self.tokenizer.decode(token_ids))
return outputs


class ThreadedGeneratorIterator:
def __init__(self, output, starting_input):
self.output = output
Expand DownExpand Up@@ -294,17 +254,12 @@ def create_pipeline(task):
ensure_device(task)
convert_dtype(task)
model_name = task.get("model", None)
model_type = None
if "model_type" in task:
model_type = task["model_type"]
if model_name:
lower = model_name.lower()
else:
lower = None
if lower and ("-ggml" in lower or "-gguf" in lower):
pipe = GGMLPipeline(model_name, **task)
elif lower and "-gptq" in lower and not (model_type == "mistral" or model_type == "llama"):
pipe = GPTQPipeline(model_name, **task)
else:
try:
pipe = StandardPipeline(model_name, **task)
Expand Down

[8]ページ先頭

©2009-2025 Movatter.jp