|
| 1 | +{ |
| 2 | +"cells": [ |
| 3 | + { |
| 4 | +"cell_type":"code", |
| 5 | +"execution_count":null, |
| 6 | +"metadata": {}, |
| 7 | +"outputs": [], |
| 8 | +"source": [ |
| 9 | +"from pgml import Database\n", |
| 10 | +"import os\n", |
| 11 | +"import json" |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | +"cell_type":"code", |
| 16 | +"execution_count":null, |
| 17 | +"metadata": {}, |
| 18 | +"outputs": [], |
| 19 | +"source": [ |
| 20 | +"local_pgml =\"postgres://postgres@127.0.0.1:5433/pgml_development\"\n", |
| 21 | +"\n", |
| 22 | +"conninfo = os.environ.get(\"PGML_CONNECTION\",local_pgml)\n", |
| 23 | +"db = Database(conninfo,min_connections=4)" |
| 24 | + ] |
| 25 | + }, |
| 26 | + { |
| 27 | +"cell_type":"code", |
| 28 | +"execution_count":null, |
| 29 | +"metadata": {}, |
| 30 | +"outputs": [], |
| 31 | +"source": [ |
| 32 | +"collection_name =\"test_pgml_sdk_1\"\n", |
| 33 | +"collection = db.create_or_get_collection(collection_name)" |
| 34 | + ] |
| 35 | + }, |
| 36 | + { |
| 37 | +"cell_type":"code", |
| 38 | +"execution_count":null, |
| 39 | +"metadata": {}, |
| 40 | +"outputs": [], |
| 41 | +"source": [ |
| 42 | +"from datasets import load_dataset\n", |
| 43 | +"\n", |
| 44 | +"data = load_dataset(\"squad\", split=\"train\")\n", |
| 45 | +"data = data.to_pandas()\n", |
| 46 | +"data.head()\n", |
| 47 | +"\n", |
| 48 | +"data = data.drop_duplicates(subset=[\"context\"])\n", |
| 49 | +"print(len(data))\n", |
| 50 | +"data.head()\n", |
| 51 | +"\n", |
| 52 | +"documents = [\n", |
| 53 | +" {\n", |
| 54 | +" 'text': r['context'],\n", |
| 55 | +" 'metadata': {\n", |
| 56 | +" 'title': r['title']\n", |
| 57 | +" }\n", |
| 58 | +" } for r in data.to_dict(orient='records')\n", |
| 59 | +"]\n", |
| 60 | +"documents[:3]" |
| 61 | + ] |
| 62 | + }, |
| 63 | + { |
| 64 | +"cell_type":"code", |
| 65 | +"execution_count":null, |
| 66 | +"metadata": {}, |
| 67 | +"outputs": [], |
| 68 | +"source": [ |
| 69 | +"collection.upsert_documents(documents[0:200])\n", |
| 70 | +"collection.generate_chunks()\n", |
| 71 | +"collection.generate_embeddings()" |
| 72 | + ] |
| 73 | + }, |
| 74 | + { |
| 75 | +"cell_type":"code", |
| 76 | +"execution_count":null, |
| 77 | +"metadata": {}, |
| 78 | +"outputs": [], |
| 79 | +"source": [ |
| 80 | +"results = collection.vector_search(\"Who won 20 Grammy awards?\", top_k=2)\n", |
| 81 | +"print(json.dumps(results,indent=2))" |
| 82 | + ] |
| 83 | + }, |
| 84 | + { |
| 85 | +"cell_type":"code", |
| 86 | +"execution_count":null, |
| 87 | +"metadata": {}, |
| 88 | +"outputs": [], |
| 89 | +"source": [ |
| 90 | +"collection.register_model(model_name=\"paraphrase-MiniLM-L6-v2\")" |
| 91 | + ] |
| 92 | + }, |
| 93 | + { |
| 94 | +"cell_type":"code", |
| 95 | +"execution_count":null, |
| 96 | +"metadata": {}, |
| 97 | +"outputs": [], |
| 98 | +"source": [ |
| 99 | +"collection.get_models()" |
| 100 | + ] |
| 101 | + }, |
| 102 | + { |
| 103 | +"cell_type":"code", |
| 104 | +"execution_count":null, |
| 105 | +"metadata": {}, |
| 106 | +"outputs": [], |
| 107 | +"source": [ |
| 108 | +"print(json.dumps(collection.get_models(),indent=2))" |
| 109 | + ] |
| 110 | + }, |
| 111 | + { |
| 112 | +"cell_type":"code", |
| 113 | +"execution_count":null, |
| 114 | +"metadata": {}, |
| 115 | +"outputs": [], |
| 116 | +"source": [ |
| 117 | +"collection.generate_embeddings(model_id=2)" |
| 118 | + ] |
| 119 | + }, |
| 120 | + { |
| 121 | +"cell_type":"code", |
| 122 | +"execution_count":null, |
| 123 | +"metadata": {}, |
| 124 | +"outputs": [], |
| 125 | +"source": [ |
| 126 | +"results = collection.vector_search(\"Who won 20 Grammy awards?\", top_k=2, model_id=2)\n", |
| 127 | +"print(json.dumps(results,indent=2))" |
| 128 | + ] |
| 129 | + }, |
| 130 | + { |
| 131 | +"cell_type":"code", |
| 132 | +"execution_count":null, |
| 133 | +"metadata": {}, |
| 134 | +"outputs": [], |
| 135 | +"source": [ |
| 136 | +"collection.register_model(model_name=\"hkunlp/instructor-xl\", model_params={\"instruction\":\"Represent the Wikipedia document for retrieval:\"})" |
| 137 | + ] |
| 138 | + }, |
| 139 | + { |
| 140 | +"cell_type":"code", |
| 141 | +"execution_count":null, |
| 142 | +"metadata": {}, |
| 143 | +"outputs": [], |
| 144 | +"source": [ |
| 145 | +"collection.get_models()" |
| 146 | + ] |
| 147 | + }, |
| 148 | + { |
| 149 | +"cell_type":"code", |
| 150 | +"execution_count":null, |
| 151 | +"metadata": {}, |
| 152 | +"outputs": [], |
| 153 | +"source": [ |
| 154 | +"collection.generate_embeddings(model_id=3)" |
| 155 | + ] |
| 156 | + }, |
| 157 | + { |
| 158 | +"cell_type":"code", |
| 159 | +"execution_count":null, |
| 160 | +"metadata": {}, |
| 161 | +"outputs": [], |
| 162 | +"source": [ |
| 163 | +"results = collection.vector_search(\"Who won 20 Grammy awards?\", top_k=2, model_id=3, query_parameters={\"instruction\":\"Represent the Wikipedia question for retrieving supporting documents:\"})\n", |
| 164 | +"print(json.dumps(results,indent=2))" |
| 165 | + ] |
| 166 | + }, |
| 167 | + { |
| 168 | +"cell_type":"code", |
| 169 | +"execution_count":null, |
| 170 | +"metadata": {}, |
| 171 | +"outputs": [], |
| 172 | +"source": [ |
| 173 | +"collection.register_text_splitter(splitter_name=\"RecursiveCharacterTextSplitter\",splitter_params={\"chunk_size\": 100,\"chunk_overlap\": 20})" |
| 174 | + ] |
| 175 | + }, |
| 176 | + { |
| 177 | +"cell_type":"code", |
| 178 | +"execution_count":null, |
| 179 | +"metadata": {}, |
| 180 | +"outputs": [], |
| 181 | +"source": [ |
| 182 | +"collection.generate_chunks(splitter_id=2)" |
| 183 | + ] |
| 184 | + }, |
| 185 | + { |
| 186 | +"cell_type":"code", |
| 187 | +"execution_count":null, |
| 188 | +"metadata": {}, |
| 189 | +"outputs": [], |
| 190 | +"source": [ |
| 191 | +"collection.generate_embeddings(splitter_id=2)" |
| 192 | + ] |
| 193 | + }, |
| 194 | + { |
| 195 | +"cell_type":"code", |
| 196 | +"execution_count":null, |
| 197 | +"metadata": {}, |
| 198 | +"outputs": [], |
| 199 | +"source": [ |
| 200 | +"results = collection.vector_search(\"Who won 20 Grammy awards?\", top_k=2, splitter_id=2)\n", |
| 201 | +"print(json.dumps(results,indent=2))" |
| 202 | + ] |
| 203 | + }, |
| 204 | + { |
| 205 | +"cell_type":"code", |
| 206 | +"execution_count":null, |
| 207 | +"metadata": {}, |
| 208 | +"outputs": [], |
| 209 | +"source": [ |
| 210 | +"db.delete_collection(collection_name)" |
| 211 | + ] |
| 212 | + } |
| 213 | + ], |
| 214 | +"metadata": { |
| 215 | +"kernelspec": { |
| 216 | +"display_name":"pgml-zoggicR5-py3.11", |
| 217 | +"language":"python", |
| 218 | +"name":"python3" |
| 219 | + }, |
| 220 | +"language_info": { |
| 221 | +"codemirror_mode": { |
| 222 | +"name":"ipython", |
| 223 | +"version":3 |
| 224 | + }, |
| 225 | +"file_extension":".py", |
| 226 | +"mimetype":"text/x-python", |
| 227 | +"name":"python", |
| 228 | +"nbconvert_exporter":"python", |
| 229 | +"pygments_lexer":"ipython3", |
| 230 | +"version":"3.11.3" |
| 231 | + }, |
| 232 | +"orig_nbformat":4 |
| 233 | + }, |
| 234 | +"nbformat":4, |
| 235 | +"nbformat_minor":2 |
| 236 | +} |