Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit8c3ee5e

Browse files
committed
Readme update in progress
1 parente02eaff commit8c3ee5e

File tree

1 file changed

+218
-40
lines changed

1 file changed

+218
-40
lines changed

‎README.md

Lines changed: 218 additions & 40 deletions
Original file line numberDiff line numberDiff line change
@@ -30,21 +30,228 @@
3030
</a>
3131
</p>
3232

33-
<palign="center">
34-
Train and deploy models to make online predictions using only SQL, with an open source extension for Postgres. Manage your projects and visualize datasets using the built-in dashboard.
35-
</p>
3633

37-
![PostgresML in practice](pgml-docs/docs/images/console.png)
34+
##Table of contents
35+
-[Introduction](#introduction)
36+
-[Installation](#installation)
37+
-[Getting started](#getting-started)
38+
-[Natural Language Processing](#nlp-tasks)
39+
-[Regression](#regression)
40+
-[Classification](#classification)
3841

39-
The dashboard makes it easy to compare different algorithms or hyperparameters across models and datasets.
42+
##Introduction
43+
PostgresML is a PostgreSQL extension that enables you to perform ML training and inference on text and tabular data using SQL queries. With PostgresML, you can seamlessly integrate machine learning models into your PostgreSQL database and harness the power of cutting-edge algorithms to process text and tabular data efficiently.
4044

41-
[![PostgresML dashboard](pgml-docs/docs/images/dashboard/models.png)](https://cloud.postgresml.org/)
45+
###Text Data
46+
- Perform natural language processing (NLP) tasks like sentiment analysis, question and answering, translation, summarization and text generation
47+
- Access 1000s of state-of-the-art language models like GPT-2, GPT-J, GPT-Neo from :hugging_face: HuggingFace model hub
48+
- Fine tune large language models (LLMs) on your own text data for different tasks
4249

43-
<h2align="center">
44-
See it in action — <a href="https://cloud.postgresml.org/" target="_blank">cloud.postgresml.org</a>
45-
</h2>
50+
**Translation**
51+
<table>
52+
<tr>
53+
<td>SQL Query</td>
54+
<td>Result </td>
55+
</tr>
56+
<tr>
57+
<td>
58+
59+
```sql
60+
SELECTpgml.transform(
61+
'translation_en_to_fr',
62+
inputs=> ARRAY[
63+
'Welcome to the future!',
64+
'Where have you been all this time?'
65+
]
66+
)AS french;
67+
```
68+
</td>
69+
<td>
70+
71+
```sql
72+
french
73+
------------------------------------------------------------
74+
75+
[
76+
{"translation_text":"Bienvenue à l'avenir!"},
77+
{"translation_text":"Où êtes-vous allé tout ce temps?"}
78+
]
79+
```
80+
</td>
81+
</tr>
82+
</table>
83+
84+
85+
86+
**Sentiment Analysis**
87+
<table>
88+
<tr>
89+
<td>SQL Query</td>
90+
<td>Result </td>
91+
</tr>
92+
<tr>
93+
<td>
94+
95+
```sql
96+
SELECTpgml.transform(
97+
98+
'{"model": "roberta-large-mnli"}'::JSONB,
99+
inputs=> ARRAY
100+
[
101+
'I love how amazingly simple ML has become!',
102+
'I hate doing mundane and thankless tasks. ☹️'
103+
]
104+
105+
)AS positivity;
106+
```
107+
</td>
108+
<td>
109+
110+
```sql
111+
positivity
112+
------------------------------------------------------
113+
[
114+
{"label":"NEUTRAL","score":0.8143417835235596},
115+
{"label":"NEUTRAL","score":0.7637073993682861}
116+
]
117+
```
118+
</td>
119+
</tr>
120+
</table>
121+
122+
123+
###Tabular data
124+
-[47+ classification and regression algorithms](https://postgresml.org/docs/guides/training/algorithm_selection)
125+
-[8 - 40X faster inference than HTTP based model serving](https://postgresml.org/blog/postgresml-is-8x-faster-than-python-http-microservices)
126+
-[Millions of transactions per second](https://postgresml.org/blog/scaling-postgresml-to-one-million-requests-per-second)
127+
-[Horizontal scalability](https://github.com/postgresml/pgcat)
128+
129+
130+
**Training a classification model**
131+
132+
<table>
133+
<tr>
134+
<td> Training </td>
135+
<td> Inference </td>
136+
</tr>
137+
<tr>
138+
<td>
139+
140+
141+
```sql
142+
SELECT*FROMpgml.train(
143+
'Handwritten Digit Image Classifier',
144+
algorithm=>'xgboost',
145+
'classification',
146+
'pgml.digits',
147+
'target'
148+
);
149+
```
150+
151+
</td>
152+
<td>
153+
154+
```sql
155+
SELECTpgml.predict(
156+
'My Classification Project',
157+
ARRAY[0.1,2.0,5.0]
158+
)AS prediction;
159+
```
160+
</td>
161+
</tr>
162+
</table>
163+
164+
##Installation
165+
PostgresML installation consists of three parts: PostgreSQL database, Postgres extension for machine learning and a dashboard app. The extension provides all the machine learning functionality and can be used independently using any SQL IDE. The dashboard app provides a eays to use interface for writing SQL notebooks, performing and tracking ML experiments and ML models.
166+
167+
###Docker
46168

47-
Please see the[quick start instructions](https://postgresml.org/user_guides/setup/quick_start_with_docker/) for general information on installing or deploying PostgresML. A[developer guide](https://postgresml.org/docs/guides/setup/developers) is also available for those who would like to contribute.
169+
Step 1: Clone this repository
170+
171+
```bash
172+
git clone git@github.com:postgresml/postgresml.git
173+
```
174+
175+
Step 2: Start dockerized services. PostgresML will run on port 5433, just in case you already have Postgres running. You can find Docker installation instructions[here](https://docs.docker.com/desktop/)
176+
```bash
177+
cd postgresml
178+
docker-compose up
179+
```
180+
181+
Step 3: Connect to PostgresDB with PostgresML enabled using a SQL IDE or[`psql`](https://www.postgresql.org/docs/current/app-psql.html)
182+
```bash
183+
postgres://postgres@localhost:5433/pgml_development
184+
```
185+
186+
###Free trial
187+
If you want to check out the functionality without the hassle of Docker please go ahead and start PostgresML by signing up for a free account[here](https://postgresml.org/signup). We will provide 5GiB disk space on a shared tenant.
188+
189+
##Getting Started
190+
191+
###IDE support
192+
- DBeaver
193+
- Data Grip
194+
- Tableau
195+
- Power BI
196+
- Jupyter
197+
- VSCode
198+
199+
##NLP Tasks
200+
- Text Classification
201+
- Token Classification
202+
- Table Question Answering
203+
- Question Answering
204+
- Zero-Shot Classification
205+
- Translation
206+
- Summarization
207+
- nConversational
208+
- Text Generation
209+
- Text2Text Generation
210+
- Fill-Mask
211+
- Sentence Similarity
212+
213+
##Regression
214+
##Classification
215+
216+
##Applications
217+
###Text
218+
- AI writing partner
219+
- Chatbot for customer support
220+
- Social media post analysis
221+
- Fintech
222+
- Healthcare
223+
- Insurance
224+
225+
226+
###Tabular data
227+
- Fraud detection
228+
- Recommendation
229+
230+
231+
##Benefits
232+
- Access to hugging face models - a little more about open source language models
233+
- Ease of fine tuning and why
234+
- Rust based extension and its benefits
235+
- Problems with HTTP serving and how PML enables microsecond latency
236+
- Pgcat for horizontal scaling
237+
238+
##Concepts
239+
- Database
240+
- Extension
241+
- ML on text data
242+
- Transform operation
243+
- Fine tune operation
244+
- ML on tabular data
245+
- Train operation
246+
- Deploy operation
247+
- Predict operation
248+
249+
##Deployment
250+
- Docker images
251+
- CPU
252+
- GPU
253+
- Data persistence on local/EC2/EKS
254+
- Deployment on AWS using docker images
48255

49256
##What's in the box
50257
See the documentation for a complete**[list of functionality](https://postgresml.org/)**.
@@ -73,35 +280,6 @@ Since your data never leaves the database, you retain the speed, reliability and
73280
###Open source
74281
We're building on the shoulders of giants. These machine learning libraries and Postgres have received extensive academic and industry use, and we'll continue their tradition to build with the community. Licensed under MIT.
75282

76-
##Quick Start
77-
78-
1) Clone this repo:
79-
80-
```bash
81-
$ git clone git@github.com:postgresml/postgresml.git
82-
```
83-
84-
2) Start dockerized services. PostgresML will run on port 5433, just in case you already have Postgres running:
85-
86-
```bash
87-
$cd postgresml&& docker-compose up
88-
```
89-
90-
3) Connect to PostgreSQL in the Docker container with PostgresML installed:
283+
##Frequently Asked Questions (FAQs)
91284

92-
```bash
93-
$ psql postgres://postgres@localhost:5433/pgml_development
94-
```
95-
96-
4) Validate your installation:
97-
98-
```sql
99-
pgml_development=# SELECT pgml.version();
100-
101-
version
102-
---------
103-
0.8.1
104-
(1 row)
105-
```
106285

107-
See the documentation for a complete guide to**[working with PostgresML](https://postgresml.org/)**.

0 commit comments

Comments
 (0)

[8]ページ先頭

©2009-2025 Movatter.jp