Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit139898d

Browse files
committed
Removed Instructor
1 parent63a8f4a commit139898d

File tree

1 file changed

+10
-19
lines changed

1 file changed

+10
-19
lines changed

‎pgml-extension/src/bindings/transformers/transformers.py‎

Lines changed: 10 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,6 @@
88
fromdatetimeimportdatetime
99

1010
importdatasets
11-
fromInstructorEmbeddingimportINSTRUCTOR
1211
importnumpy
1312
importorjson
1413
fromrougeimportRouge
@@ -502,23 +501,17 @@ def transform(task, args, inputs, stream=False):
502501

503502

504503
defcreate_embedding(transformer):
505-
instructor=transformer.startswith("hkunlp/instructor")
506-
klass=INSTRUCTORifinstructorelseSentenceTransformer
507-
returnklass(transformer)
504+
returnSentenceTransformer(transformer)
508505

509506

510507
defembed_using(model,transformer,inputs,kwargs):
511508
ifisinstance(kwargs,str):
512509
kwargs=orjson.loads(kwargs)
513510

514511
instructor=transformer.startswith("hkunlp/instructor")
515-
ifinstructor:
516-
texts_with_instructions= []
512+
ifinstructorand"instruction"inkwargs:
517513
instruction=kwargs.pop("instruction")
518-
fortextininputs:
519-
texts_with_instructions.append([instruction,text])
520-
521-
inputs=texts_with_instructions
514+
kwargs["prompt"]=instruction
522515

523516
returnmodel.encode(inputs,**kwargs)
524517

@@ -1029,7 +1022,6 @@ def __init__(
10291022
path:str,
10301023
hyperparameters:dict,
10311024
)->None:
1032-
10331025
# initialize class variables
10341026
self.project_id=project_id
10351027
self.model_id=model_id
@@ -1100,8 +1092,9 @@ def print_number_of_trainable_model_parameters(self, model):
11001092
# Calculate and print the number and percentage of trainable parameters
11011093
r_log("info",f"Trainable model parameters:{trainable_model_params}")
11021094
r_log("info",f"All model parameters:{all_model_params}")
1103-
r_log("info",
1104-
f"Percentage of trainable model parameters:{100*trainable_model_params/all_model_params:.2f}%"
1095+
r_log(
1096+
"info",
1097+
f"Percentage of trainable model parameters:{100*trainable_model_params/all_model_params:.2f}%",
11051098
)
11061099

11071100
deftokenize_function(self):
@@ -1396,23 +1389,22 @@ def __init__(
13961389
"bias":"none",
13971390
"task_type":"CAUSAL_LM",
13981391
}
1399-
r_log("info",
1392+
r_log(
1393+
"info",
14001394
"LoRA configuration are not set. Using default parameters"
1401-
+json.dumps(self.lora_config_params)
1395+
+json.dumps(self.lora_config_params),
14021396
)
14031397

14041398
self.prompt_template=None
14051399
if"prompt_template"inhyperparameters.keys():
14061400
self.prompt_template=hyperparameters.pop("prompt_template")
14071401

14081402
deftrain(self):
1409-
14101403
args=TrainingArguments(
14111404
output_dir=self.path,logging_dir=self.path,**self.training_args
14121405
)
14131406

14141407
defformatting_prompts_func(example):
1415-
14161408
system_content=example["system"]
14171409
user_content=example["user"]
14181410
assistant_content=example["assistant"]
@@ -1463,7 +1455,7 @@ def formatting_prompts_func(example):
14631455
peft_config=LoraConfig(**self.lora_config_params),
14641456
callbacks=[PGMLCallback(self.project_id,self.model_id)],
14651457
)
1466-
r_log("info","Creating Supervised Fine Tuning trainer done. Training ... ")
1458+
r_log("info","Creating Supervised Fine Tuning trainer done. Training ... ")
14671459

14681460
# Train
14691461
self.trainer.train()
@@ -1582,7 +1574,6 @@ def finetune_conversation(
15821574
project_id,
15831575
model_id,
15841576
):
1585-
15861577
train_dataset=datasets.Dataset.from_dict(
15871578
{
15881579
"system":system_train,

0 commit comments

Comments
 (0)

[8]ページ先頭

©2009-2025 Movatter.jp