Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

R package to analyze classifier performance using ROC curves.

License

NotificationsYou must be signed in to change notification settings

pabloPNC/ROCnGO

Repository files navigation

CRAN status

Overview

ROCnGO provides a set of tools to study a classifier performance byusing ROC curve based analysis. Package may address tasks in these typeof analysis such as:

  • Evaluating global classifier performance.
  • Evaluating local classifier performance when a high specificity orsensitivity is required, by using different indexes that provide:
    • Better interpretation of local performance.
    • Better power of discrimination between classifiers with similarperformance.
  • Evaluating performance on several classifier simultaneously.
  • Plot whole, or specific regions, of ROC curves.

Installation

install.packages("ROCnGO")

Alternatively, development version of ROCnGO can be installed from itsGitHub repository with:

# install.packages("devtools")devtools::install_github("pabloPNC/ROCnGO")

Usage

library(ROCnGO)# Iris subsetiris_subset<-iris[iris$Species!="versicolor", ]# Select Species = "virginica" as the condition of interestiris_subset$Species<- relevel(iris_subset$Species,"virginica")# Summarize a predictor over high sensitivity regionsummarize_predictor(iris_subset,predictor=Sepal.Length,response=Species,threshold=0.9,ratio="tpr")#> ℹ Upper threshold 1 already included in points.#> • Skipping upper threshold interpolation#> # A tibble: 1 × 5#>     auc   pauc np_auc fp_auc curve_shape#>   <dbl>  <dbl>  <dbl>  <dbl> <chr>#> 1 0.985 0.0847  0.847  0.852 Concave
# Summarize several predictors simultaneouslysummarize_dataset(iris_subset,predictors= c(Sepal.Length,Sepal.Width,Petal.Length,Petal.Width),response=Species,threshold=0.9,ratio="tpr")#> ℹ Lower 0.9 and upper 1 thresholds already included in points#> • Skipping lower and upper threshold interpolation#> $data#> # A tibble: 4 × 6#>   identifier     auc   pauc np_auc fp_auc curve_shape#>   <chr>        <dbl>  <dbl>  <dbl>  <dbl> <chr>#> 1 Sepal.Length 0.985 0.0847 0.847   0.852 Concave#> 2 Sepal.Width  0.166 0.0016 0.0160  0.9   Hook under chance#> 3 Petal.Length 1     0.1    1       1     Concave#> 4 Petal.Width  1     0.1    1       1     Concave#>#> $curve_shape#> # A tibble: 2 × 2#>   curve_shape       count#>   <chr>             <int>#> 1 Concave               3#> 2 Hook under chance     1#>#> $auc#> # A tibble: 2 × 3#> # Groups:   auc > 0.5 [2]#>   `auc > 0.5` `auc > 0.8` count#>   <lgl>       <lgl>       <int>#> 1 FALSE       FALSE           1#> 2 TRUE        TRUE            3
# Plot ROC curve of classifiersplot_roc_curve(iris_subset,predictor=Sepal.Length,response=Species)+  add_roc_curve(iris_subset,predictor=Petal.Length,response=Species)+  add_roc_points(iris_subset,predictor=Sepal.Width,response=Species)+  add_chance_line()

About

R package to analyze classifier performance using ROC curves.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages


[8]ページ先頭

©2009-2025 Movatter.jp