- Notifications
You must be signed in to change notification settings - Fork0
R package to analyze classifier performance using ROC curves.
License
NotificationsYou must be signed in to change notification settings
pabloPNC/ROCnGO
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
ROCnGO provides a set of tools to study a classifier performance byusing ROC curve based analysis. Package may address tasks in these typeof analysis such as:
- Evaluating global classifier performance.
- Evaluating local classifier performance when a high specificity orsensitivity is required, by using different indexes that provide:
- Better interpretation of local performance.
- Better power of discrimination between classifiers with similarperformance.
- Evaluating performance on several classifier simultaneously.
- Plot whole, or specific regions, of ROC curves.
install.packages("ROCnGO")Alternatively, development version of ROCnGO can be installed from itsGitHub repository with:
# install.packages("devtools")devtools::install_github("pabloPNC/ROCnGO")
library(ROCnGO)# Iris subsetiris_subset<-iris[iris$Species!="versicolor", ]# Select Species = "virginica" as the condition of interestiris_subset$Species<- relevel(iris_subset$Species,"virginica")# Summarize a predictor over high sensitivity regionsummarize_predictor(iris_subset,predictor=Sepal.Length,response=Species,threshold=0.9,ratio="tpr")#> ℹ Upper threshold 1 already included in points.#> • Skipping upper threshold interpolation#> # A tibble: 1 × 5#> auc pauc np_auc fp_auc curve_shape#> <dbl> <dbl> <dbl> <dbl> <chr>#> 1 0.985 0.0847 0.847 0.852 Concave
# Summarize several predictors simultaneouslysummarize_dataset(iris_subset,predictors= c(Sepal.Length,Sepal.Width,Petal.Length,Petal.Width),response=Species,threshold=0.9,ratio="tpr")#> ℹ Lower 0.9 and upper 1 thresholds already included in points#> • Skipping lower and upper threshold interpolation#> $data#> # A tibble: 4 × 6#> identifier auc pauc np_auc fp_auc curve_shape#> <chr> <dbl> <dbl> <dbl> <dbl> <chr>#> 1 Sepal.Length 0.985 0.0847 0.847 0.852 Concave#> 2 Sepal.Width 0.166 0.0016 0.0160 0.9 Hook under chance#> 3 Petal.Length 1 0.1 1 1 Concave#> 4 Petal.Width 1 0.1 1 1 Concave#>#> $curve_shape#> # A tibble: 2 × 2#> curve_shape count#> <chr> <int>#> 1 Concave 3#> 2 Hook under chance 1#>#> $auc#> # A tibble: 2 × 3#> # Groups: auc > 0.5 [2]#> `auc > 0.5` `auc > 0.8` count#> <lgl> <lgl> <int>#> 1 FALSE FALSE 1#> 2 TRUE TRUE 3
# Plot ROC curve of classifiersplot_roc_curve(iris_subset,predictor=Sepal.Length,response=Species)+ add_roc_curve(iris_subset,predictor=Petal.Length,response=Species)+ add_roc_points(iris_subset,predictor=Sepal.Width,response=Species)+ add_chance_line()
About
R package to analyze classifier performance using ROC curves.
Resources
License
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Packages0
No packages published
Uh oh!
There was an error while loading.Please reload this page.
