Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

A Python algorithm to cross different time-series data sets

License

NotificationsYou must be signed in to change notification settings

owuordickson/fuzztx

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

82 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Build Status

FuzzTX

A Python implementation of theFuzzTX (Fuzzy Temporal Crossing) algorithm. The algorithm applies a fuzzy triangular membership function to cross time-series data from different and/or unrelated sources based on thedate-time attributes.Research paper was accepted as a conference paper at the 2020 ADBIS, TPDL & EDA joint conferences:

  • Owuor D.O., Laurent A., Orero J.O. (2020) Exploiting IoT Data Crossings for Gradual Pattern Mining Through Parallel Processing. In: Bellatreche L. et al. (eds) ADBIS, TPDL and EDA 2020 Common Workshops and Doctoral Consortium. TPDL 2020, ADBIS 2020. Communications in Computer and Information Science, vol 1260. Springer, Cham.https://doi.org/10.1007/978-3-030-55814-7_9

Requirements

You will be required to install the following python dependencies before usingFuzzTX algorithm:

                   install python (version => 3.6)
                    $ pip3 install numpy python-dateutil scikit-fuzzy

Usage

Use it a command line program with the local package:

$python3 src/init_fuzztx_csv.py -a allowChar -f'file1.csv,file2.csv,file3.csv'

where you specify the input parameters as follows:

  • files.csv - [required] files in csv format separated by commas

  • allowChar - [optional] allow charactersdefault = 0. If set to 1, the algorithm will cross all columns including those that have non-numeric values.

For example we executed theFuzzTX algorithm on sample data-sets

$python3 src/init_fuzztx_csv.py -a 0 -f'../data/oreme/GPS.csv,../data/oreme/Omnidir.csv'

Output

The output should be a generated csv file(x_data.csv). For purposes of demonstration, we display the contents (as a nested array) below

[    ['timestamp','id_site','v1','v2','id_site','Rx','Hmax','Thmax','H1/3','Th1/3','Hmoy','Tmoy','Cambrure','Nb_Vagues'],     ['2012-01-01 00:30:00','8','49','67','1','100.0000000000','1.4900000000','5.1700000000','0.8600000000','4.5700000000','0.5400000000','3.8000000000','5.7000000000','315'],     ['2012-01-01 01:29:58','8','52','67','1','100.0000000000','1.9500000000','5.6600000000','1.1500000000','4.8600000000','0.7500000000','4.2300000000','6.1000000000','282']]0.0747671127319336seconds

License

  • MIT

References

  • Dickson Owuor, Anne Laurent, and Joseph Orero (2019). Mining Fuzzy-temporal Gradual Patterns. In the proceedings of the 2019 IEEE International Conference on Fuzzy Systems (FuzzIEEE). IEEE.https://doi.org/10.1109/FUZZ-IEEE.2019.8858883.

About

A Python algorithm to cross different time-series data sets

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages


[8]ページ先頭

©2009-2025 Movatter.jp