- Notifications
You must be signed in to change notification settings - Fork251
📐 Compute distance between sequences. 30+ algorithms, pure python implementation, common interface, optional external libs usage.
License
life4/textdistance
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
TextDistance -- python library for comparing distance between two or more sequences by many algorithms.
Features:
- 30+ algorithms
- Pure python implementation
- Simple usage
- More than two sequences comparing
- Some algorithms have more than one implementation in one class.
- Optional numpy usage for maximum speed.
Algorithm | Class | Functions |
---|---|---|
Hamming | Hamming | hamming |
MLIPNS | MLIPNS | mlipns |
Levenshtein | Levenshtein | levenshtein |
Damerau-Levenshtein | DamerauLevenshtein | damerau_levenshtein |
Jaro-Winkler | JaroWinkler | jaro_winkler ,jaro |
Strcmp95 | StrCmp95 | strcmp95 |
Needleman-Wunsch | NeedlemanWunsch | needleman_wunsch |
Gotoh | Gotoh | gotoh |
Smith-Waterman | SmithWaterman | smith_waterman |
Algorithm | Class | Functions |
---|---|---|
Jaccard index | Jaccard | jaccard |
Sørensen–Dice coefficient | Sorensen | sorensen ,sorensen_dice ,dice |
Tversky index | Tversky | tversky |
Overlap coefficient | Overlap | overlap |
Tanimoto distance | Tanimoto | tanimoto |
Cosine similarity | Cosine | cosine |
Monge-Elkan | MongeElkan | monge_elkan |
Bag distance | Bag | bag |
Algorithm | Class | Functions |
---|---|---|
longest common subsequence similarity | LCSSeq | lcsseq |
longest common substring similarity | LCSStr | lcsstr |
Ratcliff-Obershelp similarity | RatcliffObershelp | ratcliff_obershelp |
Normalized compression distance with different compression algorithms.
Classic compression algorithms:
Algorithm | Class | Function |
---|---|---|
Arithmetic coding | ArithNCD | arith_ncd |
RLE | RLENCD | rle_ncd |
BWT RLE | BWTRLENCD | bwtrle_ncd |
Normal compression algorithms:
Algorithm | Class | Function |
---|---|---|
Square Root | SqrtNCD | sqrt_ncd |
Entropy | EntropyNCD | entropy_ncd |
Work in progress algorithms that compare two strings as array of bits:
Algorithm | Class | Function |
---|---|---|
BZ2 | BZ2NCD | bz2_ncd |
LZMA | LZMANCD | lzma_ncd |
ZLib | ZLIBNCD | zlib_ncd |
Seeblog post for more details about NCD.
Algorithm | Class | Functions |
---|---|---|
MRA | MRA | mra |
Editex | Editex | editex |
Algorithm | Class | Functions |
---|---|---|
Prefix similarity | Prefix | prefix |
Postfix similarity | Postfix | postfix |
Length distance | Length | length |
Identity similarity | Identity | identity |
Matrix similarity | Matrix | matrix |
Only pure python implementation:
pip install textdistance
With extra libraries for maximum speed:
pip install"textdistance[extras]"
With all libraries (required forbenchmarking andtesting):
pip install"textdistance[benchmark]"
With algorithm specific extras:
pip install"textdistance[Hamming]"
Algorithms with available extras:DamerauLevenshtein
,Hamming
,Jaro
,JaroWinkler
,Levenshtein
.
Via pip:
pip install -e git+https://github.com/life4/textdistance.git#egg=textdistance
Or clone repo and install with some extras:
git clone https://github.com/life4/textdistance.gitpip install -e".[benchmark]"
All algorithms have 2 interfaces:
- Class with algorithm-specific params for customizing.
- Class instance with default params for quick and simple usage.
All algorithms have some common methods:
.distance(*sequences)
-- calculate distance between sequences..similarity(*sequences)
-- calculate similarity for sequences..maximum(*sequences)
-- maximum possible value for distance and similarity. For any sequence:distance + similarity == maximum
..normalized_distance(*sequences)
-- normalized distance between sequences. The return value is a float between 0 and 1, where 0 means equal, and 1 totally different..normalized_similarity(*sequences)
-- normalized similarity for sequences. The return value is a float between 0 and 1, where 0 means totally different, and 1 equal.
Most common init arguments:
qval
-- q-value for split sequences into q-grams. Possible values:- 1 (default) -- compare sequences by chars.
- 2 or more -- transform sequences to q-grams.
- None -- split sequences by words.
as_set
-- for token-based algorithms:- True --
t
andttt
is equal. - False (default) --
t
andttt
is different.
- True --
For example,Hamming distance:
importtextdistancetextdistance.hamming('test','text')# 1textdistance.hamming.distance('test','text')# 1textdistance.hamming.similarity('test','text')# 3textdistance.hamming.normalized_distance('test','text')# 0.25textdistance.hamming.normalized_similarity('test','text')# 0.75textdistance.Hamming(qval=2).distance('test','text')# 2
Any other algorithms have same interface.
A few articles with examples how to use textdistance in the real world:
- Guide to Fuzzy Matching with Python
- String similarity — the basic know your algorithms guide!
- Normalized compression distance
For main algorithms textdistance try to call known external libraries (fastest first) if available (installed in your system) and possible (this implementation can compare this type of sequences).Install textdistance with extras for this feature.
You can disable this by passingexternal=False
argument on init:
importtextdistancehamming=textdistance.Hamming(external=False)hamming('text','testit')# 3
Supported libraries:
Algorithms:
- DamerauLevenshtein
- Hamming
- Jaro
- JaroWinkler
- Levenshtein
Without extras installation:
algorithm | library | time |
---|---|---|
DamerauLevenshtein | rapidfuzz | 0.00312 |
DamerauLevenshtein | jellyfish | 0.00591 |
DamerauLevenshtein | pyxdameraulevenshtein | 0.03335 |
DamerauLevenshtein | textdistance | 0.83524 |
Hamming | Levenshtein | 0.00038 |
Hamming | rapidfuzz | 0.00044 |
Hamming | jellyfish | 0.00091 |
Hamming | textdistance | 0.03531 |
Jaro | rapidfuzz | 0.00092 |
Jaro | jellyfish | 0.00191 |
Jaro | textdistance | 0.07365 |
JaroWinkler | rapidfuzz | 0.00094 |
JaroWinkler | jellyfish | 0.00195 |
JaroWinkler | textdistance | 0.07501 |
Levenshtein | rapidfuzz | 0.00099 |
Levenshtein | Levenshtein | 0.00122 |
Levenshtein | jellyfish | 0.00254 |
Levenshtein | pylev | 0.15688 |
Levenshtein | textdistance | 0.53902 |
Total: 24 libs.
Yeah, so slow. Use TextDistance on production only with extras.
Textdistance use benchmark's results for algorithm's optimization and try to call fastest external lib first (if possible).
You can run benchmark manually on your system:
pip install textdistance[benchmark]python3 -m textdistance.benchmark
TextDistance show benchmarks results table for your system and save libraries priorities intolibraries.json
file in TextDistance's folder. This file will be used by textdistance for calling fastest algorithm implementation. Defaultlibraries.json already included in package.
All you need istask. SeeTaskfile.yml for the list of available commands. For example, to run tests including third-party libraries usage, executetask pytest-external:run
.
PRs are welcome!
- Found a bug? Fix it!
- Want to add more algorithms? Sure! Just make it with the same interface as other algorithms in the lib and add some tests.
- Can make something faster? Great! Just avoid external dependencies and remember that everything should work not only with strings.
- Something else that do you think is good? Do it! Just make sure that CI passes and everything from the README is still applicable (interface, features, and so on).
- Have no time to code? Tell your friends and subscribers about
textdistance
. More users, more contributions, more amazing features.
Thank you ❤️
About
📐 Compute distance between sequences. 30+ algorithms, pure python implementation, common interface, optional external libs usage.