- Notifications
You must be signed in to change notification settings - Fork11
Developer-First Open-Source AI Security Platform - Comprehensive Security Protection for AI Applications
License
openguardrails/openguardrails
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
🤗Hugging Face | Free Platform | Tech Report
🚀Developer-first open-source AI security platform - Comprehensive security protection for AI applications
OpenGuardrails is a developer-first open-source AI security platform. Built on advanced large language models, it provides prompt attack detection, content safety, data leak detection, and supports complete on-premise deployment to build robust security defenses for AI applications.
📄Technical Report:OpenGuardrails: A Configurable, Unified, and Scalable Guardrails Platform for Large Language Models (arXiv:2510.19169)
- 🏗️Scanner Package System 🆕 - Flexible detection architecture with official, purchasable, and custom scanners
- 📱Multi-Application Management - Manage multiple applications within one tenant account, each with isolated configurations
- 🪄Two Usage Modes - Detection API + Security Gateway
- 🛡️Triple Protection - Prompt attack detection + Content compliance detection + Data leak detection
- 🧠Context Awareness - Intelligent safety detection based on conversation context
- 📋Content Safety - Support custom training for content safety of different cultures and regions.
- 🔧Configurable Policy Adaptation - Introduces a practical solution to the long-standing policy inconsistency problem observed in existing safety benchmarks and guard models.
- 🧠Knowledge Base Responses - Vector similarity-based intelligent Q&A matching with custom knowledge bases
- 🏢Private Deployment - Support for complete local deployment, controllable data security
- 🚫Ban Policy - Intelligently identify attack patterns and automatically ban malicious users
- 🖼️Multimodal Detection - Support for text and image content safety detection
- 🔌Customer System Integration - Deep integration with existing customer user systems, API-level configuration management
- 📊Visual Management - Intuitive web management interface and real-time monitoring
- ⚡High Performance - Asynchronous processing, supporting high-concurrency access
- 🔌Easy Integration - Compatible with OpenAI API format, one-line code integration
- 🎯Configurable Sensitivity - Three-tier sensitivity threshold configuration for automated pipeline scenarios
OpenGuardrails v4.1+ introduces a revolutionary flexible scanner package system that replaces the traditional hardcoded risk types with a dynamic, extensible architecture.
System-provided packages that come pre-installed with OpenGuardrails:
- Sensitive Topics Package: S1-S18 (covers political content, violence, hate speech, etc.)
- Restricted Topics Package: S19-S21 (professional advice categories)
- Ready to use out of the box with configurable risk levels
Premium scanner packages available through the admin marketplace:
- Commercial-grade detection patterns for specific industries
- Curated by OpenGuardrails team with regular updates
- Purchase approval workflow for enterprise customers
- Example packages: Healthcare Compliance, Financial Regulations, Legal Industry
User-defined scanners for business-specific needs:
- Auto-tagged: S100, S101, S102... automatically assigned
- Application-scoped: Custom scanners belong to specific applications
- Three Scanner Types:
- GenAI Scanner: Uses OpenGuardrails-Text model for intelligent detection
- Regex Scanner: Python regex patterns for structured data detection
- Keyword Scanner: Comma-separated keyword lists for simple matching
vs Traditional Risk Types:
- ✅Unlimited Flexibility: Create unlimited custom scanners without code changes
- ✅No Database Migrations: Add new scanners without schema updates
- ✅Business-Specific Detection: Tailor detection rules to your specific use case
- ✅Performance Optimized: Parallel processing maintains <10% latency impact
- ✅Marketplace Ecosystem: Share and sell scanner packages
Example Use Cases:
# Create custom scanner for banking applicationscurl-XPOST"http://localhost:5000/api/v1/custom-scanners" \-H"Authorization: Bearer your-jwt-token" \-H"Content-Type: application/json" \-d'{"scanner_type": "genai", "name": "Bank Fraud Detection", "definition": "Detect banking fraud attempts, financial scams, and illegal financial advice", "risk_level": "high_risk", "scan_prompt": true, "scan_response": true}'# Returns auto-assigned tag: "S100"
- Official Scanners (
/platform/config/official-scanners): Manage built-in and purchased packages - Custom Scanners (
/platform/config/custom-scanners): Create and manage user-defined scanners - Admin Marketplace (
/platform/admin/package-marketplace): Upload and manage purchasable packages
Existing S1-S21 risk type configurations areautomatically migrated to the new scanner package system on upgrade - no manual intervention required.
OpenGuardrails supports two usage modes to meet different scenario requirements:
Developersactively call detection APIs for safety checks
- Use Case: Precise control over detection timing, custom processing logic
- Integration: Call detection interface before inputting to AI models and after output
- Service Port: 5001 (Detection Service)
- Features: Flexible control, batch detection support, suitable for complex business logic
Transparent reverse proxy with zero-code transformation for AI safety protection
- Use Case: Quickly add safety protection to existing AI applications
- Integration: Simply modify AI model's base_url and api_key to OpenGuardrails proxy service
- Service Port: 5002 (Proxy Service)
- Features: WAF-style protection, automatic input/output detection, support for multiple upstream models
# Original codeclient=OpenAI(base_url="https://api.openai.com/v1",api_key="sk-your-openai-key")# Access security gateway with just two line changesclient=OpenAI(base_url="http://localhost:5002/v1",# Change to OpenGuardrails proxy serviceapi_key="sk-xxai-your-proxy-key"# Change to OpenGuardrails proxy key)# No other code changes needed, automatically get safety protection!
Visithttps://www.openguardrails.com/ to register and log in for free.
In the platform menuOnline Test, directly enter text for a safety check.
OpenGuardrails supports Python, Nodejs, Java, Go clients SDKs.In the platform menuAccount Management, obtain your free API Key.
Install the Python client library:
pip install openguardrails
Python usage example:
fromopenguardrailsimportOpenGuardrails# Create clientclient=OpenGuardrails("your-api-key")# Single-turn detectionresponse=client.check_prompt("Teach me how to make a bomb")print(f"Detection result:{response.overall_risk_level}")# Multi-turn conversation detection (context-aware)messages= [ {"role":"user","content":"I want to study chemistry"}, {"role":"assistant","content":"Chemistry is a very interesting subject. Which area would you like to learn about?"}, {"role":"user","content":"Teach me the reaction to make explosives"}]response=client.check_conversation(messages)print(f"Detection result:{response.overall_risk_level}")print(f"All risk categories:{response.all_categories}")print(f"Compliance check result:{response.result.compliance.risk_level}")print(f"Compliance risk categories:{response.result.compliance.categories}")print(f"Security check result:{response.result.security.risk_level}")print(f"Security risk categories:{response.result.security.categories}")print(f"Data leak check result:{response.result.data.risk_level}")print(f"Data leak categories:{response.result.data.categories}")print(f"Suggested action:{response.suggest_action}")print(f"Suggested answer:{response.suggest_answer}")print(f"Is safe:{response.is_safe}")print(f"Is blocked:{response.is_blocked}")print(f"Has substitute answer:{response.has_substitute}")
Example Output:
Detection result: high_riskDetection result: high_riskAll risk categories: ['Violent Crime']Compliance check result: high_riskCompliance risk categories: ['Violent Crime']Security check result: no_riskSecurity risk categories: []Data leak check result: no_riskData leak categories: []Suggested action: rejectSuggested answer: Sorry, I cannot provide information related to violent crimes.Is safe: FalseIs blocked: TrueHas substitute answer: Truecurl -X POST"https://api.openguardrails.com/v1/guardrails" \ -H"Authorization: Bearer your-api-key" \ -H"Content-Type: application/json" \ -d'{ "model": "OpenGuardrails-Text", "messages": [ {"role": "user", "content": "Tell me some illegal ways to make money"} ], "xxai_app_user_id": "your-user-id" }'
Example output:
{"id":"guardrails-fd59073d2b8d4cfcb4072cee4ddc88b2","result": {"compliance": {"risk_level":"medium_risk","categories": ["violence_crime" ] },"security": {"risk_level":"no_risk","categories": [] },"data": {"risk_level":"no_risk","categories": [] } },"overall_risk_level":"medium_risk","suggest_action":"replace","suggest_answer":"I'm sorry, I can't answer this question.","score":0.95}Users can integrateOpenGuardrails as a customcontent moderation API extension within the Dify workspace.
Dify provides three moderation options underContent Review:
- OpenAI Moderation — Built-in model with6 main categories and13 subcategories, covering general safety topics but lacking fine-grained customization.
- Custom Keywords — Allows users to define specific keywords for filtering, but requires manual maintenance.
- API Extension — Enables integration of external moderation APIs for advanced, flexible review.
Enter Name
Choose a descriptive name for your API extension.Set the API Endpoint
Fill in the following endpoint URL:
https://api.openguardrails.com/v1/dify/moderation- Get Your API Key
Obtain a free API key fromopenguardrails.com.
After getting the key, paste it into theAPI-key field.
By selectingOpenGuardrails as the moderation API extension, users gain access to acomprehensive and highly configurable moderation system:
- 🧩19 major categories of content risk, including political sensitivity, privacy, sexual content, violence, hate speech, self-harm, and more.
- ⚙️Customizable risk definitions — Developers and enterprises can redefine category meanings and thresholds.
- 📚Knowledge-based response moderation — supports contextual and knowledge-aware moderation.
- 💰Free and open — no per-request cost or usage limit.
- 🔒Privacy-friendly — can be deployed locally or on private infrastructure.
One of the most powerful features of OpenGuardrails v4.1+ is the ability to create custom scanners tailored to your specific business needs.
importrequests# 1. Create a custom scanner for banking applicationsresponse=requests.post("http://localhost:5000/api/v1/custom-scanners",headers={"Authorization":"Bearer your-jwt-token"},json={"scanner_type":"genai","name":"Bank Fraud Detection","definition":"Detect banking fraud attempts, financial scams, illegal financial advice, and money laundering instructions","risk_level":"high_risk","scan_prompt":True,"scan_response":True,"notes":"Custom scanner for financial applications" })scanner=response.json()print(f"Created custom scanner:{scanner['tag']}")# Auto-assigned: S100
fromopenguardrailsimportOpenGuardrailsclient=OpenGuardrails("sk-xxai-your-api-key")# Detection automatically uses all enabled scanners (including custom)response=client.check_prompt("How can I launder money through my bank account?",application_id="your-banking-app-id"# Custom scanners are app-specific)# Response includes matched custom scanner tagsprint(f"Risk level:{response.overall_risk_level}")print(f"Matched scanners:{getattr(response,'matched_scanner_tags','N/A')}")# Output: "high_risk" and "S5,S100" (existingViolent Crime + custom Bank Fraud)
| Type | Best For | Example | Performance |
|---|---|---|---|
| GenAI | Complex concepts, contextual understanding | Medical advice detection | Model call (high accuracy) |
| Regex | Structured data, pattern matching | Credit card numbers, phone numbers | Instant (no model call) |
| Keyword | Simple blocking, keyword lists | Competitor brands, prohibited terms | Instant (no model call) |
Access the visual scanner management interface:
- Official Scanners:
/platform/config/official-scanners - Custom Scanners:
/platform/config/custom-scanners - Admin Marketplace:
/platform/admin/package-marketplace
OpenGuardrails uses aseparation of concerns architecture where AI models and the platform run independently. This design provides:
- ✅ Flexibility to deploy models on different servers (GPU requirements)
- ✅ Freedom to use any compatible model API (OpenAI-compatible)
- ✅ Simplified platform deployment (no GPU dependency)
- Docker andDocker Compose installed (installation guide)
- GPU server (for model deployment) - Ubuntu recommended with CUDA drivers
- Hugging Face account for model access token
The platform requires two AI model services running via vLLM:
# Install vLLM (if not already installed)pip install vllm# Set your Hugging Face tokenexport HF_TOKEN=your-hf-token# Start the text model servicevllm serve openguardrails/OpenGuardrails-Text-2510 \ --port 58002 \ --served-model-name OpenGuardrails-Text \ --max-model-len 8192# Or use Docker:docker run --gpus all -p 58002:8000 \ -e HF_TOKEN=your-hf-token \ vllm/vllm-openai:v0.10.1.1 \ --model openguardrails/OpenGuardrails-Text-2510 \ --port 8000 \ --served-model-name OpenGuardrails-Text \ --max-model-len 8192
Verify it's running:
# ⚠️ IMPORTANT: Use actual IP, NOT localhost/127.0.0.1curl http://YOUR_GPU_SERVER_IP:58002/v1/models# Start the embedding model servicevllm serve BAAI/bge-m3 \ --port 58004 \ --served-model-name bge-m3# Or use Docker:docker run --gpus all -p 58004:8000 \ -e HF_TOKEN=your-hf-token \ vllm/vllm-openai:v0.10.1.1 \ --model BAAI/bge-m3 \ --port 8000 \ --served-model-name bge-m3 \
Verify it's running:
# ⚠️ IMPORTANT: Use actual IP, NOT localhost/127.0.0.1curl http://YOUR_GPU_SERVER_IP:58004/v1/modelsChoose your deployment method:
Best for: Production deployment, end-users, no source code needed
# 1. Download production docker-compose filecurl -O https://raw.githubusercontent.com/openguardrails/openguardrails/main/docker-compose.prod.yml# 2. Create .env file with your configurationcat> .env<<EOF# Model API endpoints (replace with your GPU server IPs)# ⚠️ IMPORTANT: Do NOT use localhost or 127.0.0.1 here!# Use the actual IP address of your GPU server that is accessible from the Docker containers.GUARDRAILS_MODEL_API_URL=http://YOUR_GPU_SERVER_IP:58002/v1GUARDRAILS_MODEL_API_KEY=EMPTYGUARDRAILS_MODEL_NAME=OpenGuardrails-TextEMBEDDING_API_BASE_URL=http://YOUR_GPU_SERVER_IP:58004/v1EMBEDDING_API_KEY=EMPTYEMBEDDING_MODEL_NAME=bge-m3# Optional: Vision-Language model (if you have it deployed)# ⚠️ IMPORTANT: Do NOT use localhost or 127.0.0.1 here!# GUARDRAILS_VL_MODEL_API_URL=http://YOUR_GPU_SERVER_IP:58003/v1# GUARDRAILS_VL_MODEL_API_KEY=EMPTY# GUARDRAILS_VL_MODEL_NAME=OpenGuardrails-VL# Security (CHANGE THESE IN PRODUCTION!)SUPER_ADMIN_USERNAME=admin@yourdomain.comSUPER_ADMIN_PASSWORD=CHANGE-THIS-PASSWORD-IN-PRODUCTIONJWT_SECRET_KEY=your-secret-key-change-in-productionPOSTGRES_PASSWORD=your_password# Specify pre-built image from Docker Hub (or your private registry)PLATFORM_IMAGE=openguardrails/openguardrails-platform:latest# For private registry: PLATFORM_IMAGE=your-registry.com/openguardrails-platform:versionEOF# 3. Launch the platform (uses pre-built image, no build required)docker compose -f docker-compose.prod.yml up -d
Best for: Developers, customization
# 1. Clone the repositorygit clone https://github.com/openguardrails/openguardrailscd openguardrails# 2. Create .env file with your model endpointscat> .env<<EOF# Model API endpoints (replace with your GPU server IPs)# ⚠️ IMPORTANT: Do NOT use localhost or 127.0.0.1 here!# Use the actual IP address of your GPU server that is accessible from the Docker containers.GUARDRAILS_MODEL_API_URL=http://YOUR_GPU_SERVER_IP:58002/v1GUARDRAILS_MODEL_API_KEY=EMPTYGUARDRAILS_MODEL_NAME=OpenGuardrails-TextEMBEDDING_API_BASE_URL=http://YOUR_GPU_SERVER_IP:58004/v1EMBEDDING_API_KEY=EMPTYEMBEDDING_MODEL_NAME=bge-m3# Security (CHANGE THESE IN PRODUCTION!)SUPER_ADMIN_USERNAME=admin@yourdomain.comSUPER_ADMIN_PASSWORD=CHANGE-THIS-PASSWORD-IN-PRODUCTIONJWT_SECRET_KEY=your-secret-key-change-in-productionPOSTGRES_PASSWORD=your_passwordEOF# 3. Build and launchdocker compose up -d --build
# Watch platform startupdocker logs -f openguardrails-platform# Expected output:# - "Running database migrations..."# - "Successfully executed X migration(s)"# - "Starting services via supervisord..."# Check all containersdocker ps# Expected output:# - openguardrails-postgres (healthy)# - openguardrails-platform (healthy)
👉Web Interface:http://localhost:3000/platform/
Default credentials:
- Username:
admin@yourdomain.com - Password:
CHANGE-THIS-PASSWORD-IN-PRODUCTION
API Endpoints:
- Admin API:
http://localhost:5000 - Detection API:
http://localhost:5001 - Proxy API:
http://localhost:5002
OpenGuardrails ismodel-agnostic! You can use any OpenAI-compatible API:
# Example: Using OpenAI directlyGUARDRAILS_MODEL_API_URL=https://api.openai.com/v1GUARDRAILS_MODEL_API_KEY=sk-your-openai-keyGUARDRAILS_MODEL_NAME=gpt-4# Example: Using local OllamaGUARDRAILS_MODEL_API_URL=http://localhost:11434/v1GUARDRAILS_MODEL_API_KEY=ollamaGUARDRAILS_MODEL_NAME=llama2# Example: Using Anthropic Claude via proxyGUARDRAILS_MODEL_API_URL=https://api.anthropic.com/v1GUARDRAILS_MODEL_API_KEY=sk-ant-your-keyGUARDRAILS_MODEL_NAME=claude-3-sonnet
Before deploying to production, update these in your.env file:
# ✅ Change default credentialsSUPER_ADMIN_USERNAME=admin@your-company.comSUPER_ADMIN_PASSWORD=YourSecurePassword123!# ✅ Generate secure JWT secretJWT_SECRET_KEY=$(openssl rand -hex 32)# ✅ Secure database passwordPOSTGRES_PASSWORD=$(openssl rand -hex 16)# ✅ Configure model API keys (if using commercial APIs)GUARDRAILS_MODEL_API_KEY=sk-your-actual-api-keyEMBEDDING_API_KEY=sk-your-actual-embedding-key# ✅ Update CORS origins for your domainCORS_ORIGINS=https://yourdomain.com,https://app.yourdomain.com# ✅ Configure SMTP for email notificationsSMTP_SERVER=smtp.gmail.comSMTP_PORT=587SMTP_USERNAME=notifications@yourdomain.comSMTP_PASSWORD=your-smtp-passwordSMTP_USE_TLS=trueSMTP_USE_SSL=false
AI Models (on GPU server):
- Text model service on port58002
- Embedding model service on port58004
OpenGuardrails Platform (can run on any server):
- PostgreSQL database - Port54321
- Web interface - Port3000
- Admin API - Port5000
- Detection API - Port5001
- Proxy API - Port5002
Automatic Features:
- ✅ Database migrations run automatically
- ✅ Admin user created on first startup
- ✅ All services managed by Supervisor
| Label | Category | Risk Level | Description |
|---|---|---|---|
| S1 | General Political Topics | 🟢 Low | General political issues without sensitive content |
| S2 | Sensitive Political Topics | 🔴 High | Topics involving subversion, separatism, or threats to national security |
| S3 | Insult to National Symbols or Leaders | 🔴 High | Insulting national leaders, flag, emblem, or anthem |
| S4 | Harm to Minors | 🟡 Medium | Child exploitation, nudity, abuse, or harmful content |
| S5 | Violent Crime | 🔴 High | Promoting or glorifying violence (e.g., murder, terrorism) |
| S6 | Non-Violent Crime | 🟡 Medium | Encouraging fraud, drugs, hacking, or other non-violent crimes |
| S7 | Pornography | 🟡 Medium | Adult nudity, sexual acts, or obscene erotic content |
| S8 | Hate & Discrimination | 🟢 Low | Discrimination or hate based on race, gender, religion, etc. |
| S9 | Prompt Attacks | 🔴 High | Jailbreaks, injections, or prompt manipulation against the model |
| S10 | Profanity | 🟢 Low | Profanity, insults, or vulgar and threatening speech |
| S11 | Privacy Invasion | 🟢 Low | Leaking personal data such as ID, address, or medical info |
| S12 | Commercial Violations | 🟢 Low | Fraud, unfair competition, or disclosure of trade secrets |
| S13 | Intellectual Property Infringement | 🟢 Low | Plagiarism or copyright/patent violations |
| S14 | Harassment | 🟢 Low | Verbal abuse, humiliation, or targeted attacks on others |
| S15 | Weapons of Mass Destruction | 🔴 High | Promoting or describing WMDs (chemical, biological, nuclear) |
| S16 | Self-Harm | 🟡 Medium | Encouraging suicide, self-injury, or eating disorders |
| S17 | Sexual Crimes | 🔴 High | Promoting or depicting sexual assault or exploitation |
| S18 | Threats | 🟢 Low | Issuing or implying violent threats or intimidation |
| S19 | Professional Financial Advice | 🟢 Low | Providing financial advice beyond general info |
| S20 | Professional Medical Advice | 🟢 Low | Providing medical advice beyond general info |
| S21 | Professional Legal Advice | 🟢 Low | Providing legal advice beyond general info |
- 🔴 High Risk:Substitute with preset safety responses
- 🟡 Medium Risk:Substitute responses base on custom knowledge base
- 🟢 Low Risk:Allow normal processing
- ⚪ Safe:Allow no risk content
OpenGuardrails providesInput andOutput data leak detection with different behaviors:
When sensitive data (ID card, phone number, bank card, etc.) is detected inuser input:
- ✅Desensitize FIRST, then send to LLM for processing
- ❌NOT blocked - the desensitized text is forwarded to the LLM
- 🎯Use case: Protect user privacy data from leaking to external LLM providers
Example:
User Input: "My ID is 110101199001011234, phone is 13912345678"↓ Detected & DesensitizedSent to LLM: "My ID is 110***********1234, phone is 139****5678"When sensitive data is detected inLLM output:
- ✅Desensitize FIRST, then return to user
- ❌NOT blocked - the desensitized text is returned to user
- 🎯Use case: Prevent LLM from leaking sensitive data to users
Example:
Q: What is John's contact info?A (from LLM): "John's ID is 110101199001011234, phone is 13912345678"↓ Detected & DesensitizedReturned to User: "John's ID is 110***********1234, phone is 139****5678"Configuration: Each entity type can be configured independently for input/output detection in the Data Security page.
Users/Developers │ ┌─────────────┼─────────────┐ │ │ │ ▼ ▼ ▼ ┌──────────────┐ ┌──────────────┐ ┌─────────────────┐ │ Management │ │ API Call │ │ Security Gateway │ │ Interface │ │ Mode │ │ Mode │ │ (React Web) │ │ (Active Det) │ │ (Transparent │ │ │ │ │ │ Proxy) │ └──────┬───────┘ └──────┬───────┘ └────────┬────────┘ │ HTTP API │ HTTP API │ OpenAI API ▼ ▼ ▼ ┌──────────────┐ ┌──────────────┐ ┌──────────────────┐ │ Admin │ │ Detection │ │ Proxy │ │ Service │ │ Service │ │ Service │ │ (Port 5000) │ │ (Port 5001) │ │ (Port 5002) │ │ Low Conc. │ │ High Conc. │ │ High Conc. │ └──────┬───────┘ └──────┬───────┘ └─────────┬────────┘ │ │ │ │ ┌──────┼──────────────────────┼───────┐ │ │ │ │ │ ▼ ▼ ▼ ▼ ▼ ┌─────────────────────────────────────────────────────────────┐ │ PostgreSQL Database │ │ Users | Results | Blacklist | Whitelist | Templates │ │ | Proxy Config | Upstream Models │ └─────────────────────┬───────────────────────────────────────┘ │ ┌─────────────────────▼───────────────────────────────────────┐ │ OpenGuardrails Model │ │ (OpenGuardrails-Text) │ │ 🤗 HuggingFace Open Source │ └─────────────────────┬───────────────────────────────────────┘ │ (Proxy Service Only) ┌─────────────────────▼───────────────────────────────────────┐ │ Upstream AI Models │ │ OpenAI | Anthropic | Local Models | Other APIs │ └─────────────────────────────────────────────────────────────┘Admin Service (Port 5000)
- Handles management platform APIs and web interface
- User management, configuration, data statistics
- Low concurrency optimization: 2 worker processes
Detection Service (Port 5001)
- Provides high-concurrency guardrails detection API
- Supports single-turn and multi-turn conversation detection
- High concurrency optimization: 32 worker processes
Proxy Service (Port 5002) 🆕
- OpenAI-compatible security gateway reverse proxy
- Automatic input/output detection with intelligent blocking
- High concurrency optimization: 24 worker processes
- 📈 Detection statistics display
- 📊 Risk distribution charts
- 📉 Detection trend graphs
- 🎯 Real-time monitoring panel
- 🔍 Historical detection queries
- 🏷️ Multi-dimensional filtering
- 📋 Detailed result display
- 📤 Data export functionality
- ⚫ Blacklist management
- ⚪ Whitelist management
- 💬 Response template configuration
- ⚙️ Flexible rule settings
Our guardrail model is open-sourced on HuggingFace:
- Model:openguardrails/OpenGuardrails-Text-2510
- Model Size: 3.3B parameters
- Languages: 119 languages
- SOTA Performance
We provide professional AI safety solutions:
- Industry Customization: Professional fine-tuning for finance, healthcare, education
- Scenario Optimization: Optimize detection for specific use cases
- Continuous Improvement: Ongoing optimization based on usage data
- Technical Support: 24/7 professional technical support
- SLA Guarantee: 99.9% availability guarantee
- Private Deployment: Completely offline private deployment solutions
- API Customization: Custom API interfaces for business needs
- UI Customization: Customized management interface and user experience
- Integration Services: Deep integration with existing systems
- n8n Workflow Integration: Complete integration with n8n automation platform
Automate your AI safety workflows with OpenGuardrails + n8n integration! Perfect for content moderation bots, automated customer service, and workflow-based AI systems.
# Install in your n8n instance# Settings → Community Nodes → Installn8n-nodes-openguardrails
Features:
- ✅ Content safety validation
- ✅ Input/output moderation for chatbots
- ✅ Context-aware multi-turn conversation checks
- ✅ Configurable risk thresholds and actions
Use n8n's built-in HTTP Request node to call OpenGuardrails API directly.
Check then8n-integrations/http-request-examples/ folder for pre-built templates:
basic-content-check.json- Simple content moderation workflowchatbot-with-moderation.json- Complete AI chatbot with input/output protection
1️⃣ Webhook (receive user message)2️⃣ OpenGuardrails - Input Moderation3️⃣ IF (action = pass) ├─ ✅ YES → Continue to LLM └ ❌ NO → Return safe response4️⃣ OpenAI/Assistant API5️⃣ OpenGuardrails - Output Moderation6️⃣ IF (action = pass) ├─ ✅ YES → Return to user └ ❌ NO → Return safe responseHeader Auth Setup:
- Name:
Authorization - Value:
Bearer sk-xxai-YOUR-API-KEY
HTTP Request Configuration:
{"method":"POST","url":"https://api.openguardrails.com/v1/guardrails","body": {"model":"OpenGuardrails-Text","messages": [ {"role":"user","content":"{{ $json.message }}"} ],"enable_security":true,"enable_compliance":true,"enable_data_security":true }}📧Contact Us:thomas@openguardrails.com🌐Official Website:https://openguardrails.com
- API Reference - Complete API documentation
- Deployment Guide - Deployment instructions
- Migration Guide - Database migration guide
We welcome all forms of contributions!
- 🐛Submit Bug Reports
- 💡Propose New Features
- 📖 Improve documentation
- 🧪 Add test cases
- 💻 Submit code
This project is licensed underApache 2.0.
If this project helps you, please give us a ⭐️
- 📧Technical Support:thomas@openguardrails.com
- 🌐Official Website:https://openguardrails.com
- 💬Community: Join our technical discussion group
If you find our work helpful, feel free to give us a cite.
@misc{openguardrails,title={OpenGuardrails: A Configurable, Unified, and Scalable Guardrails Platform for Large Language Models},author={Thomas Wang and Haowen Li},year={2025},url={https://arxiv.org/abs/2510.19169}, }
Developer-first open-source AI security platform 🛡️
Made with ❤️ byOpenGuardrails
About
Developer-First Open-Source AI Security Platform - Comprehensive Security Protection for AI Applications
Topics
Resources
License
Contributing
Security policy
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Packages0
Contributors2
Uh oh!
There was an error while loading.Please reload this page.



