- Notifications
You must be signed in to change notification settings - Fork11
Developer-First Open-Source AI Security Platform - Comprehensive Security Protection for AI Applications
License
openguardrails/openguardrails
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
🤗Hugging Face | Free Platform | Tech Report
🚀Developer-first open-source AI security platform - Comprehensive security protection for AI applications
OpenGuardrails is a developer-first open-source AI security platform. Built on advanced large language models, it provides prompt attack detection, content safety, data leak detection, and supports complete on-premise deployment to build robust security defenses for AI applications.
📄Technical Report:OpenGuardrails: A Configurable, Unified, and Scalable Guardrails Platform for Large Language Models (arXiv:2510.19169)
- 🏗️Scanner Package System 🆕 - Flexible detection architecture with official, purchasable, and custom scanners
- 📱Multi-Application Management - Manage multiple applications within one tenant account, each with isolated configurations
- 🪄Two Usage Modes - Detection API + Security Gateway
- 🛡️Triple Protection - Prompt attack detection + Content compliance detection + Data leak detection
- 🧠Context Awareness - Intelligent safety detection based on conversation context
- 📋Content Safety - Support custom training for content safety of different cultures and regions.
- 🔧Configurable Policy Adaptation - Introduces a practical solution to the long-standing policy inconsistency problem observed in existing safety benchmarks and guard models.
- 🧠Knowledge Base Responses - Vector similarity-based intelligent Q&A matching with custom knowledge bases
- 🏢Private Deployment - Support for complete local deployment, controllable data security
- 🚫Ban Policy - Intelligently identify attack patterns and automatically ban malicious users
- 🖼️Multimodal Detection - Support for text and image content safety detection
- 🔌Customer System Integration - Deep integration with existing customer user systems, API-level configuration management
- 📊Visual Management - Intuitive web management interface and real-time monitoring
- ⚡High Performance - Asynchronous processing, supporting high-concurrency access
- 🔌Easy Integration - Compatible with OpenAI API format, one-line code integration
- 🎯Configurable Sensitivity - Three-tier sensitivity threshold configuration for automated pipeline scenarios
OpenGuardrails v4.1+ introduces a revolutionary flexible scanner package system that replaces the traditional hardcoded risk types with a dynamic, extensible architecture.
System-provided packages that come pre-installed with OpenGuardrails:
- Sensitive Topics Package: S1-S18 (covers political content, violence, hate speech, etc.)
- Restricted Topics Package: S19-S21 (professional advice categories)
- Ready to use out of the box with configurable risk levels
Premium scanner packages available through the admin marketplace:
- Commercial-grade detection patterns for specific industries
- Curated by OpenGuardrails team with regular updates
- Purchase approval workflow for enterprise customers
- Example packages: Healthcare Compliance, Financial Regulations, Legal Industry
User-defined scanners for business-specific needs:
- Auto-tagged: S100, S101, S102... automatically assigned
- Application-scoped: Custom scanners belong to specific applications
- Three Scanner Types:
- GenAI Scanner: Uses OpenGuardrails-Text model for intelligent detection
- Regex Scanner: Python regex patterns for structured data detection
- Keyword Scanner: Comma-separated keyword lists for simple matching
vs Traditional Risk Types:
- ✅Unlimited Flexibility: Create unlimited custom scanners without code changes
- ✅No Database Migrations: Add new scanners without schema updates
- ✅Business-Specific Detection: Tailor detection rules to your specific use case
- ✅Performance Optimized: Parallel processing maintains <10% latency impact
- ✅Marketplace Ecosystem: Share and sell scanner packages
Example Use Cases:
# Create custom scanner for banking applicationscurl-XPOST"http://localhost:5000/api/v1/custom-scanners" \-H"Authorization: Bearer your-jwt-token" \-H"Content-Type: application/json" \-d'{"scanner_type": "genai", "name": "Bank Fraud Detection", "definition": "Detect banking fraud attempts, financial scams, and illegal financial advice", "risk_level": "high_risk", "scan_prompt": true, "scan_response": true}'# Returns auto-assigned tag: "S100"
- Official Scanners (
/platform/config/official-scanners): Manage built-in and purchased packages - Custom Scanners (
/platform/config/custom-scanners): Create and manage user-defined scanners - Admin Marketplace (
/platform/admin/package-marketplace): Upload and manage purchasable packages
Existing S1-S21 risk type configurations areautomatically migrated to the new scanner package system on upgrade - no manual intervention required.
OpenGuardrails supports two usage modes to meet different scenario requirements:
Developersactively call detection APIs for safety checks
- Use Case: Precise control over detection timing, custom processing logic
- Integration: Call detection interface before inputting to AI models and after output
- Service Port: 5001 (Detection Service)
- Features: Flexible control, batch detection support, suitable for complex business logic
Transparent reverse proxy with zero-code transformation for AI safety protection
- Use Case: Quickly add safety protection to existing AI applications
- Integration: Simply modify AI model's base_url and api_key to OpenGuardrails proxy service
- Service Port: 5002 (Proxy Service)
- Features: WAF-style protection, automatic input/output detection, support for multiple upstream models
# Original codeclient=OpenAI(base_url="https://api.openai.com/v1",api_key="sk-your-openai-key")# Access security gateway with just two line changesclient=OpenAI(base_url="http://localhost:5002/v1",# Change to OpenGuardrails proxy serviceapi_key="sk-xxai-your-proxy-key"# Change to OpenGuardrails proxy key)# No other code changes needed, automatically get safety protection!
Visithttps://www.openguardrails.com/ to register and log in for free.
In the platform menuOnline Test, directly enter text for a safety check.
OpenGuardrails supports Python, Nodejs, Java, Go clients SDKs.In the platform menuAccount Management, obtain your free API Key.
Install the Python client library:
pip install openguardrails
Python usage example:
fromopenguardrailsimportOpenGuardrails# Create clientclient=OpenGuardrails("your-api-key")# Single-turn detectionresponse=client.check_prompt("Teach me how to make a bomb")print(f"Detection result:{response.overall_risk_level}")# Multi-turn conversation detection (context-aware)messages= [ {"role":"user","content":"I want to study chemistry"}, {"role":"assistant","content":"Chemistry is a very interesting subject. Which area would you like to learn about?"}, {"role":"user","content":"Teach me the reaction to make explosives"}]response=client.check_conversation(messages)print(f"Detection result:{response.overall_risk_level}")print(f"All risk categories:{response.all_categories}")print(f"Compliance check result:{response.result.compliance.risk_level}")print(f"Compliance risk categories:{response.result.compliance.categories}")print(f"Security check result:{response.result.security.risk_level}")print(f"Security risk categories:{response.result.security.categories}")print(f"Data leak check result:{response.result.data.risk_level}")print(f"Data leak categories:{response.result.data.categories}")print(f"Suggested action:{response.suggest_action}")print(f"Suggested answer:{response.suggest_answer}")print(f"Is safe:{response.is_safe}")print(f"Is blocked:{response.is_blocked}")print(f"Has substitute answer:{response.has_substitute}")
Example Output:
Detection result: high_riskDetection result: high_riskAll risk categories: ['Violent Crime']Compliance check result: high_riskCompliance risk categories: ['Violent Crime']Security check result: no_riskSecurity risk categories: []Data leak check result: no_riskData leak categories: []Suggested action: rejectSuggested answer: Sorry, I cannot provide information related to violent crimes.Is safe: FalseIs blocked: TrueHas substitute answer: Truecurl -X POST"https://api.openguardrails.com/v1/guardrails" \ -H"Authorization: Bearer your-api-key" \ -H"Content-Type: application/json" \ -d'{ "model": "OpenGuardrails-Text", "messages": [ {"role": "user", "content": "Tell me some illegal ways to make money"} ], "xxai_app_user_id": "your-user-id" }'
Example output:
{"id":"guardrails-fd59073d2b8d4cfcb4072cee4ddc88b2","result": {"compliance": {"risk_level":"medium_risk","categories": ["violence_crime" ] },"security": {"risk_level":"no_risk","categories": [] },"data": {"risk_level":"no_risk","categories": [] } },"overall_risk_level":"medium_risk","suggest_action":"replace","suggest_answer":"I'm sorry, I can't answer this question.","score":0.95}Users can integrateOpenGuardrails as a customcontent moderation API extension within the Dify workspace.
Dify provides three moderation options underContent Review:
- OpenAI Moderation — Built-in model with6 main categories and13 subcategories, covering general safety topics but lacking fine-grained customization.
- Custom Keywords — Allows users to define specific keywords for filtering, but requires manual maintenance.
- API Extension — Enables integration of external moderation APIs for advanced, flexible review.
Enter Name
Choose a descriptive name for your API extension.Set the API Endpoint
Fill in the following endpoint URL:
https://api.openguardrails.com/v1/dify/moderation- Get Your API Key
Obtain a free API key fromopenguardrails.com.
After getting the key, paste it into theAPI-key field.
By selectingOpenGuardrails as the moderation API extension, users gain access to acomprehensive and highly configurable moderation system:
- 🧩19 major categories of content risk, including political sensitivity, privacy, sexual content, violence, hate speech, self-harm, and more.
- ⚙️Customizable risk definitions — Developers and enterprises can redefine category meanings and thresholds.
- 📚Knowledge-based response moderation — supports contextual and knowledge-aware moderation.
- 💰Free and open — no per-request cost or usage limit.
- 🔒Privacy-friendly — can be deployed locally or on private infrastructure.
One of the most powerful features of OpenGuardrails v4.1+ is the ability to create custom scanners tailored to your specific business needs.
importrequests# 1. Create a custom scanner for banking applicationsresponse=requests.post("http://localhost:5000/api/v1/custom-scanners",headers={"Authorization":"Bearer your-jwt-token"},json={"scanner_type":"genai","name":"Bank Fraud Detection","definition":"Detect banking fraud attempts, financial scams, illegal financial advice, and money laundering instructions","risk_level":"high_risk","scan_prompt":True,"scan_response":True,"notes":"Custom scanner for financial applications" })scanner=response.json()print(f"Created custom scanner:{scanner['tag']}")# Auto-assigned: S100
fromopenguardrailsimportOpenGuardrailsclient=OpenGuardrails("sk-xxai-your-api-key")# Detection automatically uses all enabled scanners (including custom)response=client.check_prompt("How can I launder money through my bank account?",application_id="your-banking-app-id"# Custom scanners are app-specific)# Response includes matched custom scanner tagsprint(f"Risk level:{response.overall_risk_level}")print(f"Matched scanners:{getattr(response,'matched_scanner_tags','N/A')}")# Output: "high_risk" and "S5,S100" (existingViolent Crime + custom Bank Fraud)
| Type | Best For | Example | Performance |
|---|---|---|---|
| GenAI | Complex concepts, contextual understanding | Medical advice detection | Model call (high accuracy) |
| Regex | Structured data, pattern matching | Credit card numbers, phone numbers | Instant (no model call) |
| Keyword | Simple blocking, keyword lists | Competitor brands, prohibited terms | Instant (no model call) |
Access the visual scanner management interface:
- Official Scanners:
/platform/config/official-scanners - Custom Scanners:
/platform/config/custom-scanners - Admin Marketplace:
/platform/admin/package-marketplace
OpenGuardrails uses aseparation of concerns architecture where AI models and the platform run independently. This design provides:
- ✅ Flexibility to deploy models on different servers (GPU requirements)
- ✅ Freedom to use any compatible model API (OpenAI-compatible)
- ✅ Simplified platform deployment (no GPU dependency)
- Docker andDocker Compose installed (installation guide)
- GPU server (for model deployment) - Ubuntu recommended with CUDA drivers
- Hugging Face account for model access token
The platform requires two AI model services running via vLLM:
# Install vLLM (if not already installed)pip install vllm# Set your Hugging Face tokenexport HF_TOKEN=your-hf-token# Start the text model servicevllm serve openguardrails/OpenGuardrails-Text-2510 \ --port 58002 \ --served-model-name OpenGuardrails-Text \ --max-model-len 8192# Or use Docker:docker run --gpus all -p 58002:8000 \ -e HF_TOKEN=your-hf-token \ vllm/vllm-openai:v0.10.1.1 \ --model openguardrails/OpenGuardrails-Text-2510 \ --port 8000 \ --served-model-name OpenGuardrails-Text \ --max-model-len 8192
Verify it's running:
# ⚠️ IMPORTANT: Use actual IP, NOT localhost/127.0.0.1curl http://YOUR_GPU_SERVER_IP:58002/v1/models# Start the embedding model servicevllm serve BAAI/bge-m3 \ --port 58004 \ --served-model-name bge-m3# Or use Docker:docker run --gpus all -p 58004:8000 \ -e HF_TOKEN=your-hf-token \ vllm/vllm-openai:v0.10.1.1 \ --model BAAI/bge-m3 \ --port 8000 \ --served-model-name bge-m3 \
Verify it's running:
# ⚠️ IMPORTANT: Use actual IP, NOT localhost/127.0.0.1curl http://YOUR_GPU_SERVER_IP:58004/v1/modelsChoose your deployment method:
Best for: Production deployment, end-users, no source code needed
# 1. Download production docker-compose filecurl -O https://raw.githubusercontent.com/openguardrails/openguardrails/main/docker-compose.prod.yml# 2. Create .env file with your configurationcat> .env<<EOF# Model API endpoints (replace with your GPU server IPs)# ⚠️ IMPORTANT: Do NOT use localhost or 127.0.0.1 here!# Use the actual IP address of your GPU server that is accessible from the Docker containers.GUARDRAILS_MODEL_API_URL=http://YOUR_GPU_SERVER_IP:58002/v1GUARDRAILS_MODEL_API_KEY=EMPTYGUARDRAILS_MODEL_NAME=OpenGuardrails-TextEMBEDDING_API_BASE_URL=http://YOUR_GPU_SERVER_IP:58004/v1EMBEDDING_API_KEY=EMPTYEMBEDDING_MODEL_NAME=bge-m3# Optional: Vision-Language model (if you have it deployed)# ⚠️ IMPORTANT: Do NOT use localhost or 127.0.0.1 here!# GUARDRAILS_VL_MODEL_API_URL=http://YOUR_GPU_SERVER_IP:58003/v1# GUARDRAILS_VL_MODEL_API_KEY=EMPTY# GUARDRAILS_VL_MODEL_NAME=OpenGuardrails-VL# Security (CHANGE THESE IN PRODUCTION!)SUPER_ADMIN_USERNAME=admin@yourdomain.comSUPER_ADMIN_PASSWORD=CHANGE-THIS-PASSWORD-IN-PRODUCTIONJWT_SECRET_KEY=your-secret-key-change-in-productionPOSTGRES_PASSWORD=your_password# Specify pre-built image from Docker Hub (or your private registry)PLATFORM_IMAGE=openguardrails/openguardrails-platform:latest# For private registry: PLATFORM_IMAGE=your-registry.com/openguardrails-platform:versionEOF# 3. Launch the platform (uses pre-built image, no build required)docker compose -f docker-compose.prod.yml up -d
Best for: Developers, customization
# 1. Clone the repositorygit clone https://github.com/openguardrails/openguardrailscd openguardrails# 2. Create .env file with your model endpointscat> .env<<EOF# Model API endpoints (replace with your GPU server IPs)# ⚠️ IMPORTANT: Do NOT use localhost or 127.0.0.1 here!# Use the actual IP address of your GPU server that is accessible from the Docker containers.GUARDRAILS_MODEL_API_URL=http://YOUR_GPU_SERVER_IP:58002/v1GUARDRAILS_MODEL_API_KEY=EMPTYGUARDRAILS_MODEL_NAME=OpenGuardrails-TextEMBEDDING_API_BASE_URL=http://YOUR_GPU_SERVER_IP:58004/v1EMBEDDING_API_KEY=EMPTYEMBEDDING_MODEL_NAME=bge-m3# Security (CHANGE THESE IN PRODUCTION!)SUPER_ADMIN_USERNAME=admin@yourdomain.comSUPER_ADMIN_PASSWORD=CHANGE-THIS-PASSWORD-IN-PRODUCTIONJWT_SECRET_KEY=your-secret-key-change-in-productionPOSTGRES_PASSWORD=your_passwordEOF# 3. Build and launchdocker compose up -d --build
# Watch platform startupdocker logs -f openguardrails-platform# Expected output:# - "Running database migrations..."# - "Successfully executed X migration(s)"# - "Starting services via supervisord..."# Check all containersdocker ps# Expected output:# - openguardrails-postgres (healthy)# - openguardrails-platform (healthy)
👉Web Interface:http://localhost:3000/platform/
Default credentials:
- Username:
admin@yourdomain.com - Password:
CHANGE-THIS-PASSWORD-IN-PRODUCTION
API Endpoints:
- Admin API:
http://localhost:5000 - Detection API:
http://localhost:5001 - Proxy API:
http://localhost:5002
OpenGuardrails ismodel-agnostic! You can use any OpenAI-compatible API:
# Example: Using OpenAI directlyGUARDRAILS_MODEL_API_URL=https://api.openai.com/v1GUARDRAILS_MODEL_API_KEY=sk-your-openai-keyGUARDRAILS_MODEL_NAME=gpt-4# Example: Using local OllamaGUARDRAILS_MODEL_API_URL=http://localhost:11434/v1GUARDRAILS_MODEL_API_KEY=ollamaGUARDRAILS_MODEL_NAME=llama2# Example: Using Anthropic Claude via proxyGUARDRAILS_MODEL_API_URL=https://api.anthropic.com/v1GUARDRAILS_MODEL_API_KEY=sk-ant-your-keyGUARDRAILS_MODEL_NAME=claude-3-sonnet
Before deploying to production, update these in your.env file:
# ✅ Change default credentialsSUPER_ADMIN_USERNAME=admin@your-company.comSUPER_ADMIN_PASSWORD=YourSecurePassword123!# ✅ Generate secure JWT secretJWT_SECRET_KEY=$(openssl rand -hex 32)# ✅ Secure database passwordPOSTGRES_PASSWORD=$(openssl rand -hex 16)# ✅ Configure model API keys (if using commercial APIs)GUARDRAILS_MODEL_API_KEY=sk-your-actual-api-keyEMBEDDING_API_KEY=sk-your-actual-embedding-key# ✅ Update CORS origins for your domainCORS_ORIGINS=https://yourdomain.com,https://app.yourdomain.com# ✅ Configure SMTP for email notificationsSMTP_SERVER=smtp.gmail.comSMTP_PORT=587SMTP_USERNAME=notifications@yourdomain.comSMTP_PASSWORD=your-smtp-passwordSMTP_USE_TLS=trueSMTP_USE_SSL=false
AI Models (on GPU server):
- Text model service on port58002
- Embedding model service on port58004
OpenGuardrails Platform (can run on any server):
- PostgreSQL database - Port54321
- Web interface - Port3000
- Admin API - Port5000
- Detection API - Port5001
- Proxy API - Port5002
Automatic Features:
- ✅ Database migrations run automatically
- ✅ Admin user created on first startup
- ✅ All services managed by Supervisor
| Label | Category | Risk Level | Description |
|---|---|---|---|
| S1 | General Political Topics | 🟢 Low | General political issues without sensitive content |
| S2 | Sensitive Political Topics | 🔴 High | Topics involving subversion, separatism, or threats to national security |
| S3 | Insult to National Symbols or Leaders | 🔴 High | Insulting national leaders, flag, emblem, or anthem |
| S4 | Harm to Minors | 🟡 Medium | Child exploitation, nudity, abuse, or harmful content |
| S5 | Violent Crime | 🔴 High | Promoting or glorifying violence (e.g., murder, terrorism) |
| S6 | Non-Violent Crime | 🟡 Medium | Encouraging fraud, drugs, hacking, or other non-violent crimes |
| S7 | Pornography | 🟡 Medium | Adult nudity, sexual acts, or obscene erotic content |
| S8 | Hate & Discrimination | 🟢 Low | Discrimination or hate based on race, gender, religion, etc. |
| S9 | Prompt Attacks | 🔴 High | Jailbreaks, injections, or prompt manipulation against the model |
| S10 | Profanity | 🟢 Low | Profanity, insults, or vulgar and threatening speech |
| S11 | Privacy Invasion | 🟢 Low | Leaking personal data such as ID, address, or medical info |
| S12 | Commercial Violations | 🟢 Low | Fraud, unfair competition, or disclosure of trade secrets |
| S13 | Intellectual Property Infringement | 🟢 Low | Plagiarism or copyright/patent violations |
| S14 | Harassment | 🟢 Low | Verbal abuse, humiliation, or targeted attacks on others |
| S15 | Weapons of Mass Destruction | 🔴 High | Promoting or describing WMDs (chemical, biological, nuclear) |
| S16 | Self-Harm | 🟡 Medium | Encouraging suicide, self-injury, or eating disorders |
| S17 | Sexual Crimes | 🔴 High | Promoting or depicting sexual assault or exploitation |
| S18 | Threats | 🟢 Low | Issuing or implying violent threats or intimidation |
| S19 | Professional Financial Advice | 🟢 Low | Providing financial advice beyond general info |
| S20 | Professional Medical Advice | 🟢 Low | Providing medical advice beyond general info |
| S21 | Professional Legal Advice | 🟢 Low | Providing legal advice beyond general info |
- 🔴 High Risk:Substitute with preset safety responses
- 🟡 Medium Risk:Substitute responses base on custom knowledge base
- 🟢 Low Risk:Allow normal processing
- ⚪ Safe:Allow no risk content
OpenGuardrails providesInput andOutput data leak detection with different behaviors:
When sensitive data (ID card, phone number, bank card, etc.) is detected inuser input:
- ✅Desensitize FIRST, then send to LLM for processing
- ❌NOT blocked - the desensitized text is forwarded to the LLM
- 🎯Use case: Protect user privacy data from leaking to external LLM providers
Example:
User Input: "My ID is 110101199001011234, phone is 13912345678"↓ Detected & DesensitizedSent to LLM: "My ID is 110***********1234, phone is 139****5678"When sensitive data is detected inLLM output:
- ✅Desensitize FIRST, then return to user
- ❌NOT blocked - the desensitized text is returned to user
- 🎯Use case: Prevent LLM from leaking sensitive data to users
Example:
Q: What is John's contact info?A (from LLM): "John's ID is 110101199001011234, phone is 13912345678"↓ Detected & DesensitizedReturned to User: "John's ID is 110***********1234, phone is 139****5678"Configuration: Each entity type can be configured independently for input/output detection in the Data Security page.
Users/Developers │ ┌─────────────┼─────────────┐ │ │ │ ▼ ▼ ▼ ┌──────────────┐ ┌──────────────┐ ┌─────────────────┐ │ Management │ │ API Call │ │ Security Gateway │ │ Interface │ │ Mode │ │ Mode │ │ (React Web) │ │ (Active Det) │ │ (Transparent │ │ │ │ │ │ Proxy) │ └──────┬───────┘ └──────┬───────┘ └────────┬────────┘ │ HTTP API │ HTTP API │ OpenAI API ▼ ▼ ▼ ┌──────────────┐ ┌──────────────┐ ┌──────────────────┐ │ Admin │ │ Detection │ │ Proxy │ │ Service │ │ Service │ │ Service │ │ (Port 5000) │ │ (Port 5001) │ │ (Port 5002) │ │ Low Conc. │ │ High Conc. │ │ High Conc. │ └──────┬───────┘ └──────┬───────┘ └─────────┬────────┘ │ │ │ │ ┌──────┼──────────────────────┼───────┐ │ │ │ │ │ ▼ ▼ ▼ ▼ ▼ ┌─────────────────────────────────────────────────────────────┐ │ PostgreSQL Database │ │ Users | Results | Blacklist | Whitelist | Templates │ │ | Proxy Config | Upstream Models │ └─────────────────────┬───────────────────────────────────────┘ │ ┌─────────────────────▼───────────────────────────────────────┐ │ OpenGuardrails Model │ │ (OpenGuardrails-Text) │ │ 🤗 HuggingFace Open Source │ └─────────────────────┬───────────────────────────────────────┘ │ (Proxy Service Only) ┌─────────────────────▼───────────────────────────────────────┐ │ Upstream AI Models │ │ OpenAI | Anthropic | Local Models | Other APIs │ └─────────────────────────────────────────────────────────────┘Admin Service (Port 5000)
- Handles management platform APIs and web interface
- User management, configuration, data statistics
- Low concurrency optimization: 2 worker processes
Detection Service (Port 5001)
- Provides high-concurrency guardrails detection API
- Supports single-turn and multi-turn conversation detection
- High concurrency optimization: 32 worker processes
Proxy Service (Port 5002) 🆕
- OpenAI-compatible security gateway reverse proxy
- Automatic input/output detection with intelligent blocking
- High concurrency optimization: 24 worker processes
- 📈 Detection statistics display
- 📊 Risk distribution charts
- 📉 Detection trend graphs
- 🎯 Real-time monitoring panel
- 🔍 Historical detection queries
- 🏷️ Multi-dimensional filtering
- 📋 Detailed result display
- 📤 Data export functionality
- ⚫ Blacklist management
- ⚪ Whitelist management
- 💬 Response template configuration
- ⚙️ Flexible rule settings
Our guardrail model is open-sourced on HuggingFace:
- Model:openguardrails/OpenGuardrails-Text-2510
- Model Size: 3.3B parameters
- Languages: 119 languages
- SOTA Performance
We provide professional AI safety solutions:
- Industry Customization: Professional fine-tuning for finance, healthcare, education
- Scenario Optimization: Optimize detection for specific use cases
- Continuous Improvement: Ongoing optimization based on usage data
- Technical Support: 24/7 professional technical support
- SLA Guarantee: 99.9% availability guarantee
- Private Deployment: Completely offline private deployment solutions
- API Customization: Custom API interfaces for business needs
- UI Customization: Customized management interface and user experience
- Integration Services: Deep integration with existing systems
- n8n Workflow Integration: Complete integration with n8n automation platform
Automate your AI safety workflows with OpenGuardrails + n8n integration! Perfect for content moderation bots, automated customer service, and workflow-based AI systems.
# Install in your n8n instance# Settings → Community Nodes → Installn8n-nodes-openguardrails
Features:
- ✅ Content safety validation
- ✅ Input/output moderation for chatbots
- ✅ Context-aware multi-turn conversation checks
- ✅ Configurable risk thresholds and actions
Use n8n's built-in HTTP Request node to call OpenGuardrails API directly.
Check then8n-integrations/http-request-examples/ folder for pre-built templates:
basic-content-check.json- Simple content moderation workflowchatbot-with-moderation.json- Complete AI chatbot with input/output protection
1️⃣ Webhook (receive user message)2️⃣ OpenGuardrails - Input Moderation3️⃣ IF (action = pass) ├─ ✅ YES → Continue to LLM └ ❌ NO → Return safe response4️⃣ OpenAI/Assistant API5️⃣ OpenGuardrails - Output Moderation6️⃣ IF (action = pass) ├─ ✅ YES → Return to user └ ❌ NO → Return safe responseHeader Auth Setup:
- Name:
Authorization - Value:
Bearer sk-xxai-YOUR-API-KEY
HTTP Request Configuration:
{"method":"POST","url":"https://api.openguardrails.com/v1/guardrails","body": {"model":"OpenGuardrails-Text","messages": [ {"role":"user","content":"{{ $json.message }}"} ],"enable_security":true,"enable_compliance":true,"enable_data_security":true }}📧Contact Us:thomas@openguardrails.com🌐Official Website:https://openguardrails.com
- API Reference - Complete API documentation
- Deployment Guide - Deployment instructions
- Migration Guide - Database migration guide
We welcome all forms of contributions!
- 🐛Submit Bug Reports
- 💡Propose New Features
- 📖 Improve documentation
- 🧪 Add test cases
- 💻 Submit code
This project is licensed underApache 2.0.
If this project helps you, please give us a ⭐️
- 📧Technical Support:thomas@openguardrails.com
- 🌐Official Website:https://openguardrails.com
- 💬Community: Join our technical discussion group
If you find our work helpful, feel free to give us a cite.
@misc{openguardrails,title={OpenGuardrails: A Configurable, Unified, and Scalable Guardrails Platform for Large Language Models},author={Thomas Wang and Haowen Li},year={2025},url={https://arxiv.org/abs/2510.19169}, }
Developer-first open-source AI security platform 🛡️
Made with ❤️ byOpenGuardrails
About
Developer-First Open-Source AI Security Platform - Comprehensive Security Protection for AI Applications
Topics
Resources
License
Contributing
Security policy
Uh oh!
There was an error while loading.Please reload this page.



