|
| 1 | +#NPU (HUAWEI Ascend) |
| 2 | + |
| 3 | +##Usage |
| 4 | + |
| 5 | +Please refer to the[building documentation of MMCV](https://mmcv.readthedocs.io/en/latest/get_started/build.html#build-mmcv-full-on-ascend-npu-machine) to install MMCV on NPU devices |
| 6 | + |
| 7 | +Here we use 4 NPUs on your computer to train the model with the following command: |
| 8 | + |
| 9 | +```shell |
| 10 | +bash tools/dist_train.sh configs/deeplabv3/deeplabv3_r50-d8_4xb2-40k_cityscapes-512x1024.py 4 |
| 11 | +``` |
| 12 | + |
| 13 | +Also, you can use only one NPU to train the model with the following command: |
| 14 | + |
| 15 | +```shell |
| 16 | +python tools/train.py configs/deeplabv3/deeplabv3_r50-d8_4xb2-40k_cityscapes-512x1024.py |
| 17 | +``` |
| 18 | + |
| 19 | +##Models Results |
| 20 | + |
| 21 | +| Model| mIoU| Config| Download| |
| 22 | +| :-----------------:| :---:| :------------------------------------------------------------------------------------------------------------------------------------| :------------------------------------------------------------------------------------------------------------------------------------------| |
| 23 | +|[deeplabv3](<>)| 78.85|[config](https://github.com/wangjiangben-hw/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes.py)|[log](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/deeplabv3_r50-d8_4xb2-40k_cityscapes-512x1024_20230115_205626.json)| |
| 24 | +|[deeplabv3plus](<>)| 79.23|[config](https://github.com/wangjiangben-hw/mmsegmentation/blob/master/configs/deeplabv3plus_r50-d8_4xb2-40k_cityscapes-512x1024)|[log](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/deeplabv3plus_r50-d8_4xb2-40k_cityscapes-512x1024_20230116_043450.json)| |
| 25 | +|[hrnet](<>)| 78.1|[config](https://github.com/wangjiangben-hw/mmsegmentation/blob/master/configs/hrnet/fcn_hr18_4xb2-40k_cityscapes-512x1024.py)|[log](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/fcn_hr18_4xb2-40k_cityscapes-512x1024_20230116_215821.json)| |
| 26 | +|[fcn](<>)| 74.15|[config](https://github.com/wangjiangben-hw/mmsegmentation/blob/master/configs/fcn/fcn_r50-d8_4xb2-40k_cityscapes-512x1024.py)|[log](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/fcn_r50-d8_4xb2-40k_cityscapes-512x1024_20230111_083014.json)| |
| 27 | +|[icnet](<>)| 69.25|[config](https://github.com/wangjiangben-hw/mmsegmentation/blob/master/configs/icnet/icnet_r50-d8_4xb2-80k_cityscapes-832x832.py)|[log](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/icnet_r50-d8_4xb2-80k_cityscapes-832x832_20230119_002929.json)| |
| 28 | +|[pspnet](<>)| 77.21|[config](https://github.com/wangjiangben-hw/mmsegmentation/blob/master/configs/pspnet/pspnet_r50b-d8_4xb2-80k_cityscapes-512x1024.py)|[log](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/pspnet_r50b-d8_4xb2-80k_cityscapes-512x1024_20230114_042721.json)| |
| 29 | +|[unet](<>)| 68.86|[config](https://github.com/wangjiangben-hw/mmsegmentation/blob/master/configs/unet/unet-s5-d16_fcn_4xb4-160k_cityscapes-512x1024.py)|[log](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/unet-s5-d16_fcn_4xb4-160k_cityscapes-512x1024_20230129_224750.json)| |
| 30 | +|[upernet](<>)| 77.81|[config](https://github.com/wangjiangben-hw/mmsegmentation/blob/master/configs/upernet/upernet_r50_4xb2-40k_cityscapes-512x1024.py)|[log](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/upernet_r50_4xb2-40k_cityscapes-512x1024_20230129_014634.json)| |
| 31 | + |
| 32 | +**Notes:** |
| 33 | + |
| 34 | +- If not specially marked, the results on NPU with amp are the basically same as those on the GPU with FP32. |
| 35 | + |
| 36 | +**All above models are provided by Huawei Ascend group.** |