Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commitccd57a1

Browse files
authored
Update Modin* name (#2295)
* Update README.mdUpdate Modin* name by Stefana Raileanu* Update README.mdUpdate Modin* name by Stefana Raileanu* Update sample.jsonUpdate Modin* name by Stefana Raileanu* Update README.mdUpdate Modin* name by Stefana Raileanu* Update sample.json
1 parent9fa0a0f commitccd57a1

File tree

5 files changed

+18
-18
lines changed

5 files changed

+18
-18
lines changed

‎AI-and-Analytics/Getting-Started-Samples/Modin_GettingStarted/README.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,11 +1,11 @@
1-
#Modin Get Started Sample
1+
#Modin* Get Started Sample
22

3-
The`Modin Getting Started` sample demonstrates how to use distributed Pandas using the Modin package.
3+
The`Modin* Getting Started` sample demonstrates how to use distributed Pandas using the Modin package.
44

55
| Area | Description
66
| :--- | :---
77
| Category | Getting Started
8-
| What you will learn | Basic Modin programming model for Intel processors
8+
| What you will learn | Basic Modin* programming model for Intel processors
99
| Time to complete | 5 to 8 minutes
1010

1111
##Purpose
@@ -52,7 +52,7 @@ This get started sample code is implemented for CPU using the Python language. T
5252
conda install ipykernel
5353
python -m ipykernel install --user --name usr_modin
5454
```
55-
##Run the`Modin Get Started` Sample
55+
##Run the`Modin* Get Started` Sample
5656

5757
You can run the Jupyter notebook with the sample code on your local server or download the sample code from the notebook as a Python file and run it locally.
5858

‎AI-and-Analytics/Getting-Started-Samples/Modin_GettingStarted/sample.json

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,8 @@
11
{
22
"guid":"AE280EFE-9EB1-406D-B32D-5991F707E195",
3-
"name":"Intel® Distribution ofModin* Getting Started",
3+
"name":"Modin* Getting Started",
44
"categories": ["Toolkit/oneAPI AI And Analytics/Getting Started"],
5-
"description":"This sample illustrates how to use Modin accelerated Pandas functions and notes the performance gain when compared to standard Pandas functions",
5+
"description":"This sample illustrates how to use Modin* accelerated Pandas functions and notes the performance gain when compared to standard Pandas functions",
66
"builder": ["cli"],
77
"languages": [{"python":{}}],
88
"os":["linux"],
@@ -19,7 +19,7 @@
1919
"conda activate intel-aikit-modin",
2020
"pip install -r requirements.txt # Installing notebook's dependencies",
2121
"pip install runipy # Installing 'runipy' for extended abilities to execute the notebook",
22-
"runipy Modin_GettingStarted.ipynb # Test 'Modin is faster than pandas' case",
22+
"runipy Modin_GettingStarted.ipynb # Test 'Modin* is faster than pandas' case",
2323
"MODIN_CPUS=1 runipy Modin_GettingStarted.ipynb # Test 'Modin is slower than pandas' case"
2424
]
2525
}

‎AI-and-Analytics/Getting-Started-Samples/Modin_Vs_Pandas/README.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -1,11 +1,11 @@
1-
#Modin Vs. Pandas Performance Sample
1+
#Modin* Vs. Pandas Performance Sample
22

3-
The`Modin Vs. Pandas Performance` code illustrates how to use Modin* to replace the Pandas API. The sample compares the performance of Modin and the performance of Pandas for specific dataframe operations.
3+
The`Modin* Vs. Pandas Performance` code illustrates how to use Modin* to replace the Pandas API. The sample compares the performance of Modin* and the performance of Pandas for specific dataframe operations.
44

55
| Area | Description
66
|:--- |:---
77
| Category | Concepts and Functionality
8-
| What you will learn | How to accelerate the Pandas API using Modin.
8+
| What you will learn | How to accelerate the Pandas API using Modin*.
99
| Time to complete | Less than 10 minutes
1010

1111
##Purpose
@@ -19,17 +19,17 @@ You can run the sample locally or in Google Colaboratory (Colab).
1919
|:--- |:---
2020
| OS | Ubuntu* 20.04 (or newer)
2121
| Hardware | Intel® Core™ Gen10 Processor <br> Intel® Xeon® Scalable Performance processors
22-
| Software |Intel® Distribution ofModin*
22+
| Software | Modin*
2323

2424
##Key Implementation Details
2525

26-
This code sample is implemented for CPU using Python programming language. The sample requires NumPy, Pandas, Modin libraries, and the time module in Python.
26+
This code sample is implemented for CPU using Python programming language. The sample requires NumPy, Pandas, Modin* libraries, and the time module in Python.
2727

2828
##Environment Setup
2929

3030
If you want to run the sample on a local system using a command-line interface (CLI), you must install the Modin in a new Conda* environment first.
3131

32-
###Install Modin
32+
###Install Modin*
3333

3434
1. Create a Conda environment.
3535
```
@@ -65,7 +65,7 @@ If you want to run the sample on a local system using a command-line interface (
6565
ipython Modin_Vs_Pandas.ipynb
6666
```
6767

68-
##Run the`Modin Vs Pandas Performance` Sample in Google Colaboratory
68+
##Run the`Modin* Vs Pandas Performance` Sample in Google Colaboratory
6969

7070
1. Change to the directory containing the`Modin_Vs_Pandas.ipynb` notebook file on your local system.
7171

‎AI-and-Analytics/Getting-Started-Samples/Modin_Vs_Pandas/sample.json

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,8 @@
11
{
22
"guid":"FE479C5C-C7A0-4612-B8D0-F83D07155411",
3-
"name":"Intel®Modin Vs. Pandas Performance",
3+
"name":"Modin* Vs. Pandas Performance",
44
"categories": ["Toolkit/oneAPI AI And Analytics/Getting Started"],
5-
"description":"This sample code illustrates howIntel®Modin accelerates the performance of Pandas for computational operations on a dataframe.",
5+
"description":"This sample code illustrates how Modin* accelerates the performance of Pandas for computational operations on a dataframe.",
66
"builder": ["cli"],
77
"languages": [{
88
"python": {}

‎AI-and-Analytics/Getting-Started-Samples/README.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -18,8 +18,8 @@ Third party program Licenses can be found here: [third-party-programs.txt](https
1818
|--------------------------| --------- | ------------------------------------------------ | -
1919
|Inference Optimization| Intel® Neural Compressor (INC) |[Intel® Neural Compressor (INC) Sample-for-PyTorch](INC-Quantization-Sample-for-PyTorch) | Performs INT8 quantization on a Hugging Face BERT model.
2020
|Inference Optimization| Intel® Neural Compressor (INC) |[Intel® Neural Compressor (INC) Sample-for-Tensorflow](INC-Sample-for-Tensorflow) | Quantizes a FP32 model into INT8 by Intel® Neural Compressor (INC) and compares the performance between FP32 and INT8.
21-
|Data Analytics <br/> Classical Machine Learning | Modin |[Modin_GettingStarted](Modin_GettingStarted) | Run Modin-accelerated Pandas functions and note the performance gain.
22-
|Data Analytics <br/> Classical Machine Learning | Modin |[Modin_Vs_Pandas](Modin_Vs_Pandas)| Compares the performance of Intel® Distribution of Modin* and the performance of Pandas.
21+
|Data Analytics <br/> Classical Machine Learning | Modin* |[Modin_GettingStarted](Modin_GettingStarted) | Run Modin*-accelerated Pandas functions and note the performance gain.
22+
|Data Analytics <br/> Classical Machine Learning | Modin* |[Modin_Vs_Pandas](Modin_Vs_Pandas)| Compares the performance of Intel® Distribution of Modin* and the performance of Pandas.
2323
|Classical Machine Learning| Intel® Optimization for XGBoost* |[IntelPython_XGBoost_GettingStarted](IntelPython_XGBoost_GettingStarted) | Set up and trains an XGBoost* model on datasets for prediction.
2424
|Classical Machine Learning| daal4py |[IntelPython_daal4py_GettingStarted](IntelPython_daal4py_GettingStarted) | Batch linear regression using the Python API package daal4py from oneAPI Data Analytics Library (oneDAL).
2525
|Deep Learning <br/> Inference Optimization| Intel® Optimization for TensorFlow* |[IntelTensorFlow_GettingStarted](IntelTensorFlow_GettingStarted) | A simple training example for TensorFlow.

0 commit comments

Comments
 (0)

[8]ページ先頭

©2009-2025 Movatter.jp