Uh oh!
There was an error while loading.Please reload this page.
- Notifications
You must be signed in to change notification settings - Fork11.8k
v2.3.0 (June 7, 2025)
0532af4NumPy 2.3.0 Release Notes
The NumPy 2.3.0 release continues the work to improve free threaded
Python support and annotations together with the usual set of bug fixes.
It is unusual in the number of expired deprecations, code
modernizations, and style cleanups. The latter may not be visible to
users, but is important for code maintenance over the long term. Note
that we have also upgraded from manylinux2014 to manylinux_2_28.
Users running on a Mac having an M4 cpu might see various warnings about
invalid values and such. The warnings are a known problem with
Accelerate. They are annoying, but otherwise harmless. Apple promises to
fix them.
This release supports Python versions 3.11-3.13, Python 3.14 will be
supported when it is released.
Highlights
- Interactive examples in the NumPy documentation.
- Building NumPy with OpenMP Parallelization.
- Preliminary support for Windows on ARM.
- Improved support for free threaded Python.
- Improved annotations.
New functions
New functionnumpy.strings.slice
The new functionnumpy.strings.slice was added, which implements fast
native slicing of string arrays. It supports the full slicing API
including negative slice offsets and steps.
(gh-27789)
Deprecations
The
numpy.typing.mypy_pluginhas been deprecated in favor of
platform-agnostic static type inference. Please removenumpy.typing.mypy_pluginfrom thepluginssection of your mypy
configuration. If this change results in new errors being reported,
kindly open an issue.(gh-28129)
The
numpy.typing.NBitBasetype has been deprecated and will be
removed in a future version.This type was previously intended to be used as a generic upper
bound for type-parameters, for example:importnumpyasnpimportnumpy.typingasnptdeff[NT:npt.NBitBase](x:np.complexfloating[NT])->np.floating[NT]: ...
But in NumPy 2.2.0,
float64andcomplex128were changed to
concrete subtypes, causing static type-checkers to rejectx: np.float64 = f(np.complex128(42j)).So instead, the better approach is to use
typing.overload:importnumpyasnpfromtypingimportoverload@overloaddeff(x:np.complex64)->np.float32: ...@overloaddeff(x:np.complex128)->np.float64: ...@overloaddeff(x:np.clongdouble)->np.longdouble: ...
(gh-28884)
Expired deprecations
Remove deprecated macros like
NPY_OWNDATAfrom Cython interfaces
in favor ofNPY_ARRAY_OWNDATA(deprecated since 1.7)(gh-28254)
Remove
numpy/npy_1_7_deprecated_api.hand C macros likeNPY_OWNDATAin favor ofNPY_ARRAY_OWNDATA(deprecated since 1.7)(gh-28254)
Remove alias
generate_divbyzero_errortonpy_set_floatstatus_divbyzeroandgenerate_overflow_errortonpy_set_floatstatus_overflow(deprecated since 1.10)(gh-28254)
Remove
np.tostring(deprecated since 1.19)(gh-28254)
Raise on
np.conjugateof non-numeric types (deprecated since 1.13)(gh-28254)
Raise when using
np.bincount(...minlength=None), use 0 instead
(deprecated since 1.14)(gh-28254)
Passing
shape=Noneto functions with a non-optional shape argument
errors, use()instead (deprecated since 1.20)(gh-28254)
Inexact matches for
modeandsearchsideraise (deprecated since
1.20)(gh-28254)
Setting
__array_finalize__ = Noneerrors (deprecated since 1.23)(gh-28254)
np.fromfileandnp.fromstringerror on bad data, previously they
would guess (deprecated since 1.18)(gh-28254)
datetime64andtimedelta64construction with a tuple no longer
accepts aneventvalue, either use a two-tuple of (unit, num) or a
4-tuple of (unit, num, den, 1) (deprecated since 1.14)(gh-28254)
When constructing a
dtypefrom a class with adtypeattribute,
that attribute must be a dtype-instance rather than a thing that can
be parsed as a dtype instance (deprecated in 1.19). At some point
the whole construct of using a dtype attribute will be deprecated
(see#25306)(gh-28254)
Passing booleans as partition index errors (deprecated since 1.23)
(gh-28254)
Out-of-bounds indexes error even on empty arrays (deprecated since
1.20)(gh-28254)
np.tostringhas been removed, usetobytesinstead (deprecated
since 1.19)(gh-28254)
Disallow make a non-writeable array writeable for arrays with a base
that do not own their data (deprecated since 1.17)(gh-28254)
concatenate()withaxis=Noneusessame-kindcasting by
default, notunsafe(deprecated since 1.20)(gh-28254)
Unpickling a scalar with object dtype errors (deprecated since 1.20)
(gh-28254)
The binary mode of
fromstringnow errors, usefrombufferinstead
(deprecated since 1.14)(gh-28254)
Converting
np.inexactornp.floatingto a dtype errors
(deprecated since 1.19)(gh-28254)
Converting
np.complex,np.integer,np.signedinteger,np.unsignedinteger,np.genericto a dtype errors (deprecated
since 1.19)(gh-28254)
The Python built-in
rounderrors for complex scalars. Usenp.roundorscalar.roundinstead (deprecated since 1.19)(gh-28254)
'np.bool' scalars can no longer be interpreted as an index
(deprecated since 1.19)(gh-28254)
Parsing an integer via a float string is no longer supported.
(deprecated since 1.23) To avoid this error you can- make sure the original data is stored as integers.
- use the
converters=floatkeyword argument. - Use
np.loadtxt(...).astype(np.int64)
(gh-28254)
The use of a length 1 tuple for the ufunc
signatureerrors. Usedtypeor fill the tuple withNone(deprecated since 1.19)(gh-28254)
Special handling of matrix is in np.outer is removed. Convert to a
ndarray viamatrix.A(deprecated since 1.20)(gh-28254)
Removed the
np.compatpackage source code (removed in 2.0)(gh-28961)
C API changes
NpyIter_GetTransferFlagsis now available to check if the iterator
needs the Python API or if casts may cause floating point errors
(FPE). FPEs can for example be set when castingfloat64(1e300)tofloat32(overflow to infinity) or a NaN to an integer (invalid
value).(gh-27883)
NpyIternow has no limit on the number of operands it supports.(gh-28080)
NewNpyIter_GetTransferFlags andNpyIter_IterationNeedsAPI change
NumPy now has the newNpyIter_GetTransferFlags function as a more
precise way checking of iterator/buffering needs. I.e. whether the
Python API/GIL is required or floating point errors may occur. This
function is also faster if you already know your needs without
buffering.
TheNpyIter_IterationNeedsAPI function now performs all the checks
that were previously performed at setup time. While it was never
necessary to call it multiple times, doing so will now have a larger
cost.
(gh-27998)
New Features
The type parameter of
np.dtypenow defaults totyping.Any. This
way, static type-checkers will inferdtype: np.dtypeasdtype: np.dtype[Any], without reporting an error.(gh-28669)
Static type-checkers now interpret:
_: np.ndarrayas_: npt.NDArray[typing.Any]._: np.flatiteras_: np.flatiter[np.ndarray].
This is because their type parameters now have default values.
(gh-28940)
NumPy now registers its pkg-config paths with thepkgconf PyPI package
Thepkgconf PyPI
package provides an interface for projects like NumPy to register their
own paths to be added to the pkg-config search path. This means that
when usingpkgconf
from PyPI, NumPy will be discoverable without needing for any custom
environment configuration.
Note
This only applies when using thepkgconf package fromPyPI,
or put another way, this only applies when installingpkgconf via a
Python package manager.
If you are usingpkg-config orpkgconf provided by your system,
or any other source that does not use thepkgconf-pypi
project, the NumPy pkg-config directory will not be automatically added
to the search path. In these situations, you might want to usenumpy-config.
(gh-28214)
Allowout=... in ufuncs to ensure array result
NumPy has the sometimes difficult behavior that it currently usually
returns scalars rather than 0-D arrays (even if the inputs were 0-D
arrays). This is especially problematic for non-numerical dtypes (e.g.object).
For ufuncs (i.e. most simple math functions) it is now possible to useout=... (literally `...`, e.g.out=Ellipsis) which is identical
in behavior toout not being passed, but will ensure a non-scalar
return. This spelling is borrowed fromarr1d[0, ...] where the...
also ensures a non-scalar return.
Other functions with anout= kwarg should gain support eventually.
Downstream libraries that interoperate via__array_ufunc__ or__array_function__ may need to adapt to support this.
(gh-28576)
Building NumPy with OpenMP Parallelization
NumPy now supports OpenMP parallel processing capabilities when built
with the-Denable_openmp=true Meson build flag. This feature is
disabled by default. When enabled,np.sort andnp.argsort functions
can utilize OpenMP for parallel thread execution, improving performance
for these operations.
(gh-28619)
Interactive examples in the NumPy documentation
The NumPy documentation includes a number of examples that can now be
run interactively in your browser using WebAssembly and Pyodide.
Please note that the examples are currently experimental in nature and
may not work as expected for all methods in the public API.
(gh-26745)
Improvements
Scalar comparisons between non-comparable dtypes such as
np.array(1) == np.array('s')now return a NumPy bool instead of a
Python bool.(gh-27288)
np.nditernow has no limit on the number of supported operands
(C-integer).(gh-28080)
No-copy pickling is now supported for any array that can be
transposed to a C-contiguous array.(gh-28105)
The
__repr__for user-defined dtypes now prefers the__name__of
the custom dtype over a more generic name constructed from itskindanditemsize.(gh-28250)
np.dotnow reports floating point exceptions.(gh-28442)
np.dtypes.StringDTypeis now ageneric
type which
accepts a type argument forna_objectthat defaults totyping.Never. For example,StringDType(na_object=None)returns aStringDType[None], andStringDType()returns aStringDType[typing.Never].(gh-28856)
Added warnings tonp.isclose
Added warning messages if at least one of atol or rtol are eithernp.nan ornp.inf withinnp.isclose.
- Warnings follow the user's
np.seterrsettings
(gh-28205)
Performance improvements and changes
Performance improvements tonp.unique
np.unique now tries to use a hash table to find unique values instead
of sorting values before finding unique values. This is limited to
certain dtypes for now, and the function is now faster for those dtypes.
The function now also exposes asorted parameter to allow returning
unique values as they were found, instead of sorting them afterwards.
(gh-26018)
Performance improvements tonp.sort andnp.argsort
np.sort andnp.argsort functions now can leverage OpenMP for
parallel thread execution, resulting in up to 3.5x speedups on x86
architectures with AVX2 or AVX-512 instructions. This opt-in feature
requires NumPy to be built with the -Denable_openmp Meson flag. Users
can control the number of threads used by setting the OMP_NUM_THREADS
environment variable.
(gh-28619)
Performance improvements fornp.float16 casts
Earlier, floating point casts to and fromnp.float16 types were
emulated in software on all platforms.
Now, on ARM devices that support Neon float16 intrinsics (such as recent
Apple Silicon), the native float16 path is used to achieve the best
performance.
(gh-28769)
Changes
The vector norm
ord=infand the matrix normsord={1, 2, inf, 'nuc'}now always returns zero for empty arrays.
Empty arrays have at least one axis of size zero. This affectsnp.linalg.norm,np.linalg.vector_norm, andnp.linalg.matrix_norm. Previously, NumPy would raises errors or
return zero depending on the shape of the array.(gh-28343)
A spelling error in the error message returned when converting a
string to a float with the methodnp.format_float_positionalhas
been fixed.(gh-28569)
NumPy's
__array_api_version__was upgraded from2023.12to2024.12.numpy.count_nonzeroforaxis=None(default) now returns a NumPy
scalar instead of a Python integer.The parameter
axisinnumpy.take_along_axisfunction has now a
default value of-1.(gh-28615)
Printing of
np.float16andnp.float32scalars and arrays have
been improved by adjusting the transition to scientific notation
based on the floating point precision. A new legacynp.printoptionsmode'2.2'has been added for backwards
compatibility.(gh-28703)
Multiplication between a string and integer now raises OverflowError
instead of MemoryError if the result of the multiplication would
create a string that is too large to be represented. This follows
Python's behavior.(gh-29060)
unique_values may return unsorted data
The relatively new function (added in NumPy 2.0)unique_values may now
return unsorted results. Just asunique_counts andunique_all these
never guaranteed a sorted result, however, the result was sorted until
now. In cases where these do return a sorted result, this may change in
future releases to improve performance.
(gh-26018)
Changes to the main iterator and potential numerical changes
The main iterator, used in math functions and vianp.nditer from
Python andNpyIter in C, now behaves differently for some buffered
iterations. This means that:
- The buffer size used will often be smaller than the maximum buffer
sized allowed by thebuffersizeparameter. - The "growinner" flag is now honored with buffered reductions when
no operand requires buffering.
Fornp.sum() such changes in buffersize may slightly change numerical
results of floating point operations. Users who use "growinner" for
custom reductions could notice changes in precision (for example, in
NumPy we removed it fromeinsum to avoid most precision changes and
improve precision for some 64bit floating point inputs).
(gh-27883)
The minimum supported GCC version is now 9.3.0
The minimum supported version was updated from 8.4.0 to 9.3.0, primarily
in order to reduce the chance of platform-specific bugs in old GCC
versions from causing issues.
(gh-28102)
Changes to automatic bin selection in numpy.histogram
The automatic bin selection algorithm innumpy.histogram has been
modified to avoid out-of-memory errors for samples with low variation.
For full control over the selected bins the user can use set thebin
orrange parameters ofnumpy.histogram.
(gh-28426)
Build manylinux_2_28 wheels
Wheels for linux systems will use themanylinux_2_28 tag (instead of
themanylinux2014 tag), which means dropping support for
redhat7/centos7, amazonlinux2, debian9, ubuntu18.04, and other
pre-glibc2.28 operating system versions, as per thePEP 600 support
table.
(gh-28436)
Remove use of -Wl,-ld_classic on macOS
Remove use of -Wl,-ld_classic on macOS. This hack is no longer needed by
Spack, and results in libraries that cannot link to other libraries
built with ld (new).
(gh-28713)
Re-enable overriding functions in thenumpy.strings
Re-enable overriding functions in thenumpy.strings module.
(gh-28741)
Checksums
MD5
cf552b6b6390343c24bf60365950c91c numpy-2.3.0-cp311-cp311-macosx_10_9_x86_64.whld3c377f49f84b36297cfc2fc30c6a288 numpy-2.3.0-cp311-cp311-macosx_11_0_arm64.whl4e12cd2aea876c09fdc3aaac2d0f4bac numpy-2.3.0-cp311-cp311-macosx_14_0_arm64.whla33af1d4e1f0ee5ed82d7933c5df9f84 numpy-2.3.0-cp311-cp311-macosx_14_0_x86_64.whlcd5cf04cb8b40e65aac8264c7bf3d7c9 numpy-2.3.0-cp311-cp311-manylinux_2_28_aarch64.whl6a45424beb8f4f23e7b2b853bc18aefa numpy-2.3.0-cp311-cp311-manylinux_2_28_x86_64.whl2dc1c1d1b9deb8c0626af68c0c00660a numpy-2.3.0-cp311-cp311-musllinux_1_2_aarch64.whl9ff8ea227afce090dea3b4dac4653fa6 numpy-2.3.0-cp311-cp311-musllinux_1_2_x86_64.whla1e9e40a20187e1f5ae2f8ba165e291b numpy-2.3.0-cp311-cp311-win32.whl819e4ac62a3449c79818ff5aa0e6b276 numpy-2.3.0-cp311-cp311-win_amd64.whl347260edfd35535b15b8133280793080 numpy-2.3.0-cp311-cp311-win_arm64.whl9c1ad46e637b876a0535de60f5b604bc numpy-2.3.0-cp312-cp312-macosx_10_13_x86_64.whl5b656fbed339bcac1af6de73b15e5dba numpy-2.3.0-cp312-cp312-macosx_11_0_arm64.whl5b86d6d0cab79d0cd381bb2e912e7e23 numpy-2.3.0-cp312-cp312-macosx_14_0_arm64.whlea83ef5cd00d5e42bb745eee1ee0ad3f numpy-2.3.0-cp312-cp312-macosx_14_0_x86_64.whl15a5f57cb51d3d957c1b387c4bc54830 numpy-2.3.0-cp312-cp312-manylinux_2_28_aarch64.whlb5fa92d1093dab4c3ca0622c29c4a241 numpy-2.3.0-cp312-cp312-manylinux_2_28_x86_64.whl666cad26086ee212047e5ea0e8906480 numpy-2.3.0-cp312-cp312-musllinux_1_2_aarch64.whl6263705622ca89ccadc6f458effde281 numpy-2.3.0-cp312-cp312-musllinux_1_2_x86_64.whlbf1bf83eca701ff70351c2d7b308e181 numpy-2.3.0-cp312-cp312-win32.whl0707b427c1102bb904994289e1555c3d numpy-2.3.0-cp312-cp312-win_amd64.whl097bd498f8333d383db61105044906dc numpy-2.3.0-cp312-cp312-win_arm64.whl54eb5fa0444ff5dd078bb1aa30d9533f numpy-2.3.0-cp313-cp313-macosx_10_13_x86_64.whl004b4c3650562bd851e31fb925863acb numpy-2.3.0-cp313-cp313-macosx_11_0_arm64.whlcd4e31304e51cc5dacd355730be25e4e numpy-2.3.0-cp313-cp313-macosx_14_0_arm64.whl0ed70aa071f35060ee68d6ab407159e5 numpy-2.3.0-cp313-cp313-macosx_14_0_x86_64.whla89b304bbb52268b233ab9652fee8142 numpy-2.3.0-cp313-cp313-manylinux_2_28_aarch64.whl4b55cf791be482e8d8e5aaba0c10b6f2 numpy-2.3.0-cp313-cp313-manylinux_2_28_x86_64.whld3a1b81da2f2cba4743d1ee5385cb4d6 numpy-2.3.0-cp313-cp313-musllinux_1_2_aarch64.whlfcaacdedcd8cfec7a6cb430fba7a5553 numpy-2.3.0-cp313-cp313-musllinux_1_2_x86_64.whl7d0deec2ad395fda48b80be59612db22 numpy-2.3.0-cp313-cp313-win32.whl7386a22b0ef219ba043f6e085933dbd6 numpy-2.3.0-cp313-cp313-win_amd64.whlf4559038276d0e2bfb19601484d4cdff numpy-2.3.0-cp313-cp313-win_arm64.whl6c586985db2e888876aa96ceaf99ee66 numpy-2.3.0-cp313-cp313t-macosx_10_13_x86_64.whl9726de30cce2b36940225a7ea086c824 numpy-2.3.0-cp313-cp313t-macosx_11_0_arm64.whlea021092cbb7b1e7d0984dc774bb288d numpy-2.3.0-cp313-cp313t-macosx_14_0_arm64.whl6f8261bc789eed1d3f6f7ea9ff3c2a2c numpy-2.3.0-cp313-cp313t-macosx_14_0_x86_64.whlab624ddc1425d44412541aad1f012fd9 numpy-2.3.0-cp313-cp313t-manylinux_2_28_aarch64.whlaf55bc7a8f46ec8d413eb1fbe2c200e9 numpy-2.3.0-cp313-cp313t-manylinux_2_28_x86_64.whl830eecf7c372aa0d7d746ad031ff0ba1 numpy-2.3.0-cp313-cp313t-musllinux_1_2_aarch64.whl28870039fde4fec369185e185bf0077e numpy-2.3.0-cp313-cp313t-musllinux_1_2_x86_64.whl4510373c08383787c263a4b5a21a24ef numpy-2.3.0-cp313-cp313t-win32.whlde883c4313f4dc984045a51b8edb4084 numpy-2.3.0-cp313-cp313t-win_amd64.whl334f5c275a6aad46e5f46436572d3dc1 numpy-2.3.0-cp313-cp313t-win_arm64.whl05b86d4a21a832e20e4ebdc6febf298d numpy-2.3.0-pp311-pypy311_pp73-macosx_10_15_x86_64.whl4589038edf55f085252f194e880d7454 numpy-2.3.0-pp311-pypy311_pp73-macosx_14_0_arm64.whl7d8f0554035717dc396de7d77c696377 numpy-2.3.0-pp311-pypy311_pp73-macosx_14_0_x86_64.whlc0cb89f0dca94446e6aa472ec6874c22 numpy-2.3.0-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl14e43315dea5eddffe888986e47d8584 numpy-2.3.0-pp311-pypy311_pp73-manylinux_2_28_x86_64.whle3688182f8551c3c99b559c1696d41dc numpy-2.3.0-pp311-pypy311_pp73-win_amd64.whl19a5470a37d066bd3e9385918d7760e7 numpy-2.3.0.tar.gzSHA256
c3c9fdde0fa18afa1099d6257eb82890ea4f3102847e692193b54e00312a9ae9 numpy-2.3.0-cp311-cp311-macosx_10_9_x86_64.whl46d16f72c2192da7b83984aa5455baee640e33a9f1e61e656f29adf55e406c2b numpy-2.3.0-cp311-cp311-macosx_11_0_arm64.whla0be278be9307c4ab06b788f2a077f05e180aea817b3e41cebbd5aaf7bd85ed3 numpy-2.3.0-cp311-cp311-macosx_14_0_arm64.whl99224862d1412d2562248d4710126355d3a8db7672170a39d6909ac47687a8a4 numpy-2.3.0-cp311-cp311-macosx_14_0_x86_64.whl2393a914db64b0ead0ab80c962e42d09d5f385802006a6c87835acb1f58adb96 numpy-2.3.0-cp311-cp311-manylinux_2_28_aarch64.whl7729c8008d55e80784bd113787ce876ca117185c579c0d626f59b87d433ea779 numpy-2.3.0-cp311-cp311-manylinux_2_28_x86_64.whl06d4fb37a8d383b769281714897420c5cc3545c79dc427df57fc9b852ee0bf58 numpy-2.3.0-cp311-cp311-musllinux_1_2_aarch64.whlc39ec392b5db5088259c68250e342612db82dc80ce044cf16496cf14cf6bc6f8 numpy-2.3.0-cp311-cp311-musllinux_1_2_x86_64.whlee9d3ee70d62827bc91f3ea5eee33153212c41f639918550ac0475e3588da59f numpy-2.3.0-cp311-cp311-win32.whl43c55b6a860b0eb44d42341438b03513cf3879cb3617afb749ad49307e164edd numpy-2.3.0-cp311-cp311-win_amd64.whl2e6a1409eee0cb0316cb64640a49a49ca44deb1a537e6b1121dc7c458a1299a8 numpy-2.3.0-cp311-cp311-win_arm64.whl389b85335838155a9076e9ad7f8fdba0827496ec2d2dc32ce69ce7898bde03ba numpy-2.3.0-cp312-cp312-macosx_10_13_x86_64.whl9498f60cd6bb8238d8eaf468a3d5bb031d34cd12556af53510f05fcf581c1b7e numpy-2.3.0-cp312-cp312-macosx_11_0_arm64.whl622a65d40d8eb427d8e722fd410ac3ad4958002f109230bc714fa551044ebae2 numpy-2.3.0-cp312-cp312-macosx_14_0_arm64.whlb9446d9d8505aadadb686d51d838f2b6688c9e85636a0c3abaeb55ed54756459 numpy-2.3.0-cp312-cp312-macosx_14_0_x86_64.whl50080245365d75137a2bf46151e975de63146ae6d79f7e6bd5c0e85c9931d06a numpy-2.3.0-cp312-cp312-manylinux_2_28_aarch64.whlc24bb4113c66936eeaa0dc1e47c74770453d34f46ee07ae4efd853a2ed1ad10a numpy-2.3.0-cp312-cp312-manylinux_2_28_x86_64.whl4d8d294287fdf685281e671886c6dcdf0291a7c19db3e5cb4178d07ccf6ecc67 numpy-2.3.0-cp312-cp312-musllinux_1_2_aarch64.whl6295f81f093b7f5769d1728a6bd8bf7466de2adfa771ede944ce6711382b89dc numpy-2.3.0-cp312-cp312-musllinux_1_2_x86_64.whle6648078bdd974ef5d15cecc31b0c410e2e24178a6e10bf511e0557eed0f2570 numpy-2.3.0-cp312-cp312-win32.whl0898c67a58cdaaf29994bc0e2c65230fd4de0ac40afaf1584ed0b02cd74c6fdd numpy-2.3.0-cp312-cp312-win_amd64.whlbd8df082b6c4695753ad6193018c05aac465d634834dca47a3ae06d4bb22d9ea numpy-2.3.0-cp312-cp312-win_arm64.whl5754ab5595bfa2c2387d241296e0381c21f44a4b90a776c3c1d39eede13a746a numpy-2.3.0-cp313-cp313-macosx_10_13_x86_64.whld11fa02f77752d8099573d64e5fe33de3229b6632036ec08f7080f46b6649959 numpy-2.3.0-cp313-cp313-macosx_11_0_arm64.whlaba48d17e87688a765ab1cd557882052f238e2f36545dfa8e29e6a91aef77afe numpy-2.3.0-cp313-cp313-macosx_14_0_arm64.whl4dc58865623023b63b10d52f18abaac3729346a7a46a778381e0e3af4b7f3beb numpy-2.3.0-cp313-cp313-macosx_14_0_x86_64.whldf470d376f54e052c76517393fa443758fefcdd634645bc9c1f84eafc67087f0 numpy-2.3.0-cp313-cp313-manylinux_2_28_aarch64.whl87717eb24d4a8a64683b7a4e91ace04e2f5c7c77872f823f02a94feee186168f numpy-2.3.0-cp313-cp313-manylinux_2_28_x86_64.whld8fa264d56882b59dcb5ea4d6ab6f31d0c58a57b41aec605848b6eb2ef4a43e8 numpy-2.3.0-cp313-cp313-musllinux_1_2_aarch64.whle651756066a0eaf900916497e20e02fe1ae544187cb0fe88de981671ee7f6270 numpy-2.3.0-cp313-cp313-musllinux_1_2_x86_64.whle43c3cce3b6ae5f94696669ff2a6eafd9a6b9332008bafa4117af70f4b88be6f numpy-2.3.0-cp313-cp313-win32.whl81ae0bf2564cf475f94be4a27ef7bcf8af0c3e28da46770fc904da9abd5279b5 numpy-2.3.0-cp313-cp313-win_amd64.whlc8738baa52505fa6e82778580b23f945e3578412554d937093eac9205e845e6e numpy-2.3.0-cp313-cp313-win_arm64.whl39b27d8b38942a647f048b675f134dd5a567f95bfff481f9109ec308515c51d8 numpy-2.3.0-cp313-cp313t-macosx_10_13_x86_64.whl0eba4a1ea88f9a6f30f56fdafdeb8da3774349eacddab9581a21234b8535d3d3 numpy-2.3.0-cp313-cp313t-macosx_11_0_arm64.whlb0f1f11d0a1da54927436505a5a7670b154eac27f5672afc389661013dfe3d4f numpy-2.3.0-cp313-cp313t-macosx_14_0_arm64.whl690d0a5b60a47e1f9dcec7b77750a4854c0d690e9058b7bef3106e3ae9117808 numpy-2.3.0-cp313-cp313t-macosx_14_0_x86_64.whl8b51ead2b258284458e570942137155978583e407babc22e3d0ed7af33ce06f8 numpy-2.3.0-cp313-cp313t-manylinux_2_28_aarch64.whlaaf81c7b82c73bd9b45e79cfb9476cb9c29e937494bfe9092c26aece812818ad numpy-2.3.0-cp313-cp313t-manylinux_2_28_x86_64.whlf420033a20b4f6a2a11f585f93c843ac40686a7c3fa514060a97d9de93e5e72b numpy-2.3.0-cp313-cp313t-musllinux_1_2_aarch64.whld344ca32ab482bcf8735d8f95091ad081f97120546f3d250240868430ce52555 numpy-2.3.0-cp313-cp313t-musllinux_1_2_x86_64.whl48a2e8eaf76364c32a1feaa60d6925eaf32ed7a040183b807e02674305beef61 numpy-2.3.0-cp313-cp313t-win32.whlba17f93a94e503551f154de210e4d50c5e3ee20f7e7a1b5f6ce3f22d419b93bb numpy-2.3.0-cp313-cp313t-win_amd64.whlf14e016d9409680959691c109be98c436c6249eaf7f118b424679793607b5944 numpy-2.3.0-cp313-cp313t-win_arm64.whl80b46117c7359de8167cc00a2c7d823bdd505e8c7727ae0871025a86d668283b numpy-2.3.0-pp311-pypy311_pp73-macosx_10_15_x86_64.whl5814a0f43e70c061f47abd5857d120179609ddc32a613138cbb6c4e9e2dbdda5 numpy-2.3.0-pp311-pypy311_pp73-macosx_14_0_arm64.whlef6c1e88fd6b81ac6d215ed71dc8cd027e54d4bf1d2682d362449097156267a2 numpy-2.3.0-pp311-pypy311_pp73-macosx_14_0_x86_64.whl33a5a12a45bb82d9997e2c0b12adae97507ad7c347546190a18ff14c28bbca12 numpy-2.3.0-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl54dfc8681c1906d239e95ab1508d0a533c4a9505e52ee2d71a5472b04437ef97 numpy-2.3.0-pp311-pypy311_pp73-manylinux_2_28_x86_64.whle017a8a251ff4d18d71f139e28bdc7c31edba7a507f72b1414ed902cbe48c74d numpy-2.3.0-pp311-pypy311_pp73-win_amd64.whl581f87f9e9e9db2cba2141400e160e9dd644ee248788d6f90636eeb8fd9260a6 numpy-2.3.0.tar.gzAssets5
Uh oh!
There was an error while loading.Please reload this page.