Uh oh!
There was an error while loading.Please reload this page.
- Notifications
You must be signed in to change notification settings - Fork10.9k
v1.23.2
Compare
Could not load tags
Nothing to show
{{ refName }}defaultLoading
· 9228 commits to main since this release
21cacaf
This commit was created on GitHub.com and signed with GitHub’sverified signature. The key has expired.
NumPy 1.23.2 Release Notes
NumPy 1.23.2 is a maintenance release that fixes bugs discovered after
the 1.23.1 release. Notable features are:
- Typing changes needed for Python 3.11
- Wheels for Python 3.11.0rc1
The Python versions supported for this release are 3.8-3.11.
Contributors
A total of 9 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.
- Alexander Grund +
- Bas van Beek
- Charles Harris
- Jon Cusick +
- Matti Picus
- Michael Osthege +
- Pal Barta +
- Ross Barnowski
- Sebastian Berg
Pull requests merged
A total of 15 pull requests were merged for this release.
- #22030: ENH: Add
__array_ufunc__
typing support to thenin=1
ufuncs - #22031: MAINT, TYP: Fix
np.angle
dtype-overloads - #22032: MAINT: Do not let
_GenericAlias
wrap the underlying classes'... - #22033: TYP,MAINT: Allow
einsum
subscripts to be passed via integer... - #22034: MAINT,TYP: Add object-overloads for the
np.generic
rich comparisons - #22035: MAINT,TYP: Allow the
squeeze
andtranspose
method to... - #22036: BUG: Fix subarray to object cast ownership details
- #22037: BUG: Use
Popen
to silently invoke f77 -v - #22038: BUG: Avoid errors on NULL during deepcopy
- #22039: DOC: Add versionchanged for converter callable behavior.
- #22057: MAINT: Quiet the anaconda uploads.
- #22078: ENH: reorder includes for testing on top of system installations...
- #22106: TST: fix test_linear_interpolation_formula_symmetric
- #22107: BUG: Fix skip condition for test_loss_of_precision[complex256]
- #22115: BLD: Build python3.11.0rc1 wheels.
Checksums
MD5
fe1e3480ea8c417c8f7b05f543c1448d numpy-1.23.2-cp310-cp310-macosx_10_9_x86_64.whl0ab14b1afd0a55a374ca69b3b39cab3c numpy-1.23.2-cp310-cp310-macosx_11_0_arm64.whldf059e5405bfe75c0ac77b01abbdb237 numpy-1.23.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl4ed412c4c078e96edf11ca3b11eef76b numpy-1.23.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl0caad53d9a5e3c5e8cd29f19a9f0c014 numpy-1.23.2-cp310-cp310-win32.whl01e508b8b4f591daff128da1cfde8e1f numpy-1.23.2-cp310-cp310-win_amd64.whl8ecdb7e2a87255878b748550d91cfbe0 numpy-1.23.2-cp311-cp311-macosx_10_9_x86_64.whle3004aae46cec9e234f78eaf473272e0 numpy-1.23.2-cp311-cp311-macosx_11_0_arm64.whlec23c73caf581867d5ca9255b802f144 numpy-1.23.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl9b8389f528fe113247954248f0b78ce1 numpy-1.23.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whla54b136daa2fbb483909f08eecbfa3c5 numpy-1.23.2-cp311-cp311-win32.whlead32e141857c5ef33b1a6cd88aefc0f numpy-1.23.2-cp311-cp311-win_amd64.whldf1f18e52d0a2840d101fdc9c2c6af84 numpy-1.23.2-cp38-cp38-macosx_10_9_x86_64.whl04c986880bb24fac2f44face75eab914 numpy-1.23.2-cp38-cp38-macosx_11_0_arm64.whledeba58edb214390112810f7ead903a8 numpy-1.23.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whlc26ea699d94d7f1009c976c66cc4def3 numpy-1.23.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whlc246a78b09f8893d998d449dcab0fac3 numpy-1.23.2-cp38-cp38-win32.whlb5c5a2f961402259e301c49b8b05de55 numpy-1.23.2-cp38-cp38-win_amd64.whld156dfae94d33eeff7fb9c6e5187e049 numpy-1.23.2-cp39-cp39-macosx_10_9_x86_64.whl7f2ad7867c577eab925a31de76486765 numpy-1.23.2-cp39-cp39-macosx_11_0_arm64.whl76262a8e5d7a4d945446467467300a10 numpy-1.23.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl8ee105f4574d61a2d494418b55f63fcb numpy-1.23.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl2b7c79cae66023f8e716150223201981 numpy-1.23.2-cp39-cp39-win32.whld7af57dd070ccb165f3893412eb602e3 numpy-1.23.2-cp39-cp39-win_amd64.whl355a231dbd87a0f2125cc23eb8f97075 numpy-1.23.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl4ab13c35056f67981d03f9ceec41db42 numpy-1.23.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl3a6f1e1256ee9be10d8cdf6be578fe52 numpy-1.23.2-pp38-pypy38_pp73-win_amd64.whl9bf2a361509797de14ceee607387fe0f numpy-1.23.2.tar.gz
SHA256
e603ca1fb47b913942f3e660a15e55a9ebca906857edfea476ae5f0fe9b457d5 numpy-1.23.2-cp310-cp310-macosx_10_9_x86_64.whl633679a472934b1c20a12ed0c9a6c9eb167fbb4cb89031939bfd03dd9dbc62b8 numpy-1.23.2-cp310-cp310-macosx_11_0_arm64.whl17e5226674f6ea79e14e3b91bfbc153fdf3ac13f5cc54ee7bc8fdbe820a32da0 numpy-1.23.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whlbdc02c0235b261925102b1bd586579b7158e9d0d07ecb61148a1799214a4afd5 numpy-1.23.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whldf28dda02c9328e122661f399f7655cdcbcf22ea42daa3650a26bce08a187450 numpy-1.23.2-cp310-cp310-win32.whl8ebf7e194b89bc66b78475bd3624d92980fca4e5bb86dda08d677d786fefc414 numpy-1.23.2-cp310-cp310-win_amd64.whldc76bca1ca98f4b122114435f83f1fcf3c0fe48e4e6f660e07996abf2f53903c numpy-1.23.2-cp311-cp311-macosx_10_9_x86_64.whlecfdd68d334a6b97472ed032b5b37a30d8217c097acfff15e8452c710e775524 numpy-1.23.2-cp311-cp311-macosx_11_0_arm64.whl5593f67e66dea4e237f5af998d31a43e447786b2154ba1ad833676c788f37cde numpy-1.23.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whlac987b35df8c2a2eab495ee206658117e9ce867acf3ccb376a19e83070e69418 numpy-1.23.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whld98addfd3c8728ee8b2c49126f3c44c703e2b005d4a95998e2167af176a9e722 numpy-1.23.2-cp311-cp311-win32.whl8ecb818231afe5f0f568c81f12ce50f2b828ff2b27487520d85eb44c71313b9e numpy-1.23.2-cp311-cp311-win_amd64.whl909c56c4d4341ec8315291a105169d8aae732cfb4c250fbc375a1efb7a844f8f numpy-1.23.2-cp38-cp38-macosx_10_9_x86_64.whl8247f01c4721479e482cc2f9f7d973f3f47810cbc8c65e38fd1bbd3141cc9842 numpy-1.23.2-cp38-cp38-macosx_11_0_arm64.whlb8b97a8a87cadcd3f94659b4ef6ec056261fa1e1c3317f4193ac231d4df70215 numpy-1.23.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whlbd5b7ccae24e3d8501ee5563e82febc1771e73bd268eef82a1e8d2b4d556ae66 numpy-1.23.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl9b83d48e464f393d46e8dd8171687394d39bc5abfe2978896b77dc2604e8635d numpy-1.23.2-cp38-cp38-win32.whldec198619b7dbd6db58603cd256e092bcadef22a796f778bf87f8592b468441d numpy-1.23.2-cp38-cp38-win_amd64.whl4f41f5bf20d9a521f8cab3a34557cd77b6f205ab2116651f12959714494268b0 numpy-1.23.2-cp39-cp39-macosx_10_9_x86_64.whl806cc25d5c43e240db709875e947076b2826f47c2c340a5a2f36da5bb10c58d6 numpy-1.23.2-cp39-cp39-macosx_11_0_arm64.whl8f9d84a24889ebb4c641a9b99e54adb8cab50972f0166a3abc14c3b93163f074 numpy-1.23.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whlc403c81bb8ffb1c993d0165a11493fd4bf1353d258f6997b3ee288b0a48fce77 numpy-1.23.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whlcf8c6aed12a935abf2e290860af8e77b26a042eb7f2582ff83dc7ed5f963340c numpy-1.23.2-cp39-cp39-win32.whl5e28cd64624dc2354a349152599e55308eb6ca95a13ce6a7d5679ebff2962913 numpy-1.23.2-cp39-cp39-win_amd64.whl806970e69106556d1dd200e26647e9bee5e2b3f1814f9da104a943e8d548ca38 numpy-1.23.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl2bd879d3ca4b6f39b7770829f73278b7c5e248c91d538aab1e506c628353e47f numpy-1.23.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whlbe6b350dfbc7f708d9d853663772a9310783ea58f6035eec649fb9c4371b5389 numpy-1.23.2-pp38-pypy38_pp73-win_amd64.whlb78d00e48261fbbd04aa0d7427cf78d18401ee0abd89c7559bbf422e5b1c7d01 numpy-1.23.2.tar.gz
Assets5
Uh oh!
There was an error while loading.Please reload this page.
20 people reacted