Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

v2.2.6 (May 17, 2025)

Latest
Compare
Choose a tag to compare
Loading
@charrischarris released this 17 May 22:45
· 1368 commits to main since this release
v2.2.6
This tag was signed with the committer’sverified signature.
charris Charles Harris
GPG key ID:679F228377C5247B
Verified
Learn about vigilant mode.
2b686f6
This commit was created on GitHub.com and signed with GitHub’sverified signature.
GPG key ID:B5690EEEBB952194
Verified
Learn about vigilant mode.

NumPy 2.2.6 Release Notes

NumPy 2.2.6 is a patch release that fixes bugs found after the 2.2.5
release. It is a mix of typing fixes/improvements as well as the normal
bug fixes and some CI maintenance.

This release supports Python versions 3.10-3.13.

Contributors

A total of 8 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Charles Harris
  • Ilhan Polat
  • Joren Hammudoglu
  • Marco Gorelli +
  • Matti Picus
  • Nathan Goldbaum
  • Peter Hawkins
  • Sayed Adel

Pull requests merged

A total of 11 pull requests were merged for this release.

  • #28778: MAINT: Prepare 2.2.x for further development
  • #28851: BLD: Update vendor-meson to fix module_feature conflicts arguments...
  • #28852: BUG: fix heap buffer overflow in np.strings.find
  • #28853: TYP: fixNDArray[floating] + float return type
  • #28864: BUG: fix stringdtype singleton thread safety
  • #28865: MAINT: use OpenBLAS 0.3.29
  • #28889: MAINT: from_dlpack thread safety fixes
  • #28913: TYP: Fix non-existentCanIndex annotation inndarray.setfield
  • #28915: MAINT: Avoid dereferencing/strict aliasing warnings
  • #28916: BUG: Fix missing check for PyErr_Occurred() in _pyarray_correlate.
  • #28966: TYP: reject complex scalar types in ndarray.__ifloordiv__

Checksums

MD5

259343f056061f6eadb2f4b8999d06d4  numpy-2.2.6-cp310-cp310-macosx_10_9_x86_64.whl16fa85488e149489ce7ee044d7b0d307  numpy-2.2.6-cp310-cp310-macosx_11_0_arm64.whlf01b7aea9d2b76b1eeb49766e615d689  numpy-2.2.6-cp310-cp310-macosx_14_0_arm64.whlf2ddc2b22517f6e31caa1372b12c2499  numpy-2.2.6-cp310-cp310-macosx_14_0_x86_64.whl52190e22869884f0870eb3df7a283ca9  numpy-2.2.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl8f382b9ca6770db600edd5ea2447a925  numpy-2.2.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whle604aae2ef6e01fb92ecc39aca0424d9  numpy-2.2.6-cp310-cp310-musllinux_1_2_aarch64.whl3e5626cf6d8bec95d430a7362e71691c  numpy-2.2.6-cp310-cp310-musllinux_1_2_x86_64.whl8f4f1982837618ed7636ebd432234aeb  numpy-2.2.6-cp310-cp310-win32.whl1cfd2ac5609b4800512f0ce304e19acc  numpy-2.2.6-cp310-cp310-win_amd64.whl116203803ceeaa911dd64810b0305b4c  numpy-2.2.6-cp311-cp311-macosx_10_9_x86_64.whl0427961f3a70ed92b1c4d2c5516c5803  numpy-2.2.6-cp311-cp311-macosx_11_0_arm64.whlfeb8104ed864d51c68984ff93f7255b5  numpy-2.2.6-cp311-cp311-macosx_14_0_arm64.whlf640cd91637f1d474947ecdb18d17ee8  numpy-2.2.6-cp311-cp311-macosx_14_0_x86_64.whl2f87d921a50fe50d04bb62125f8638dd  numpy-2.2.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl7f986c33f49d5940d6d005ff7039e420  numpy-2.2.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl0f7073c78e0aede7179c537f64856db7  numpy-2.2.6-cp311-cp311-musllinux_1_2_aarch64.whl7402bbedcc0b59bd6cef1c483b77dac0  numpy-2.2.6-cp311-cp311-musllinux_1_2_x86_64.whl93c920d40abbc10d5d056b8bfbcdad74  numpy-2.2.6-cp311-cp311-win32.whl9162cb90bff0e4ba322f1e61da9f2fba  numpy-2.2.6-cp311-cp311-win_amd64.whl75e9fa94b0a6ef568b532f6e0773a6a7  numpy-2.2.6-cp312-cp312-macosx_10_13_x86_64.whl79d8f89e82971bb2a2f61d0ef8f1a677  numpy-2.2.6-cp312-cp312-macosx_11_0_arm64.whlfb553e49196bce93af4b0d7e1e8fad1e  numpy-2.2.6-cp312-cp312-macosx_14_0_arm64.whl01a338bc3a5349b5b7db4335fe879810  numpy-2.2.6-cp312-cp312-macosx_14_0_x86_64.whlf37533a7ae4aa95da824b1df2786ac55  numpy-2.2.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl2f9ac35f955d9217b6841568ce13d636  numpy-2.2.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whldf530a075c04dbef9abcac95d027c8bc  numpy-2.2.6-cp312-cp312-musllinux_1_2_aarch64.whl4edf8f80feec739de3e08fffe97195a3  numpy-2.2.6-cp312-cp312-musllinux_1_2_x86_64.whl3e2664254d9a7bb5c66df2b108aaec2f  numpy-2.2.6-cp312-cp312-win32.whlae2e39f1dba9b91d35edcd8736041df8  numpy-2.2.6-cp312-cp312-win_amd64.whl2faa32e27b81105db53fb2fc25a54e0d  numpy-2.2.6-cp313-cp313-macosx_10_13_x86_64.whl0d05b1bb5af5059c8775a4f10fa0ec3d  numpy-2.2.6-cp313-cp313-macosx_11_0_arm64.whlbb404027de8df58312964e26528ef591  numpy-2.2.6-cp313-cp313-macosx_14_0_arm64.whl1340a90e0f62a31691e475214f773196  numpy-2.2.6-cp313-cp313-macosx_14_0_x86_64.whl954981f2846e6735798fb33c1e6fba76  numpy-2.2.6-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl4e4eccd129b31fbef3ced7fb338e862e  numpy-2.2.6-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whlc704c1c56c777bc0fc0d54bbcf9f2ddb  numpy-2.2.6-cp313-cp313-musllinux_1_2_aarch64.whlfb459919a3433235312673bd5797ab8b  numpy-2.2.6-cp313-cp313-musllinux_1_2_x86_64.whl9998e8ae155872c375ce6c020654176b  numpy-2.2.6-cp313-cp313-win32.whl03df8a78963b318b4dfede10b213dce4  numpy-2.2.6-cp313-cp313-win_amd64.whld1982e582eae2fb076942c0bbedcefe4  numpy-2.2.6-cp313-cp313t-macosx_10_13_x86_64.whlcbc7a48b9ca730a8d40927666651430a  numpy-2.2.6-cp313-cp313t-macosx_11_0_arm64.whlcd1d2271c05ccc502b78827b88ff7670  numpy-2.2.6-cp313-cp313t-macosx_14_0_arm64.whlc2b4fb7464e42af240ad51c8be5fb1ba  numpy-2.2.6-cp313-cp313t-macosx_14_0_x86_64.whl6a96c540b8df291a128bb50dfdad0ba4  numpy-2.2.6-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl113d466026e770badd1061a6e1a8ca92  numpy-2.2.6-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl1fce5d26d8d6d021954f717b4bad483c  numpy-2.2.6-cp313-cp313t-musllinux_1_2_aarch64.whld980d6c4b486ad09dbf62ac5cf1b0b2a  numpy-2.2.6-cp313-cp313t-musllinux_1_2_x86_64.whl21571229d4376f3c0458d8eb1be3ba52  numpy-2.2.6-cp313-cp313t-win32.whl4accc0387feec817565aeaba93c79173  numpy-2.2.6-cp313-cp313t-win_amd64.whl774589ee5f842137322ff19b56a35270  numpy-2.2.6-pp310-pypy310_pp73-macosx_10_15_x86_64.whlf934cef42ac65a2094dd5280aa6bf9a2  numpy-2.2.6-pp310-pypy310_pp73-macosx_14_0_x86_64.whl0e53fbb4195726c62b8f237a4bf545e9  numpy-2.2.6-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl3c96c89609022ecd27d44b12c2349a06  numpy-2.2.6-pp310-pypy310_pp73-win_amd64.whl63d66dc1db9d603df0a84c870e703cfc  numpy-2.2.6.tar.gz

SHA256

b412caa66f72040e6d268491a59f2c43bf03eb6c96dd8f0307829feb7fa2b6fb  numpy-2.2.6-cp310-cp310-macosx_10_9_x86_64.whl8e41fd67c52b86603a91c1a505ebaef50b3314de0213461c7a6e99c9a3beff90  numpy-2.2.6-cp310-cp310-macosx_11_0_arm64.whl37e990a01ae6ec7fe7fa1c26c55ecb672dd98b19c3d0e1d1f326fa13cb38d163  numpy-2.2.6-cp310-cp310-macosx_14_0_arm64.whl5a6429d4be8ca66d889b7cf70f536a397dc45ba6faeb5f8c5427935d9592e9cf  numpy-2.2.6-cp310-cp310-macosx_14_0_x86_64.whlefd28d4e9cd7d7a8d39074a4d44c63eda73401580c5c76acda2ce969e0a38e83  numpy-2.2.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whlfc7b73d02efb0e18c000e9ad8b83480dfcd5dfd11065997ed4c6747470ae8915  numpy-2.2.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl74d4531beb257d2c3f4b261bfb0fc09e0f9ebb8842d82a7b4209415896adc680  numpy-2.2.6-cp310-cp310-musllinux_1_2_aarch64.whl8fc377d995680230e83241d8a96def29f204b5782f371c532579b4f20607a289  numpy-2.2.6-cp310-cp310-musllinux_1_2_x86_64.whlb093dd74e50a8cba3e873868d9e93a85b78e0daf2e98c6797566ad8044e8363d  numpy-2.2.6-cp310-cp310-win32.whlf0fd6321b839904e15c46e0d257fdd101dd7f530fe03fd6359c1ea63738703f3  numpy-2.2.6-cp310-cp310-win_amd64.whlf9f1adb22318e121c5c69a09142811a201ef17ab257a1e66ca3025065b7f53ae  numpy-2.2.6-cp311-cp311-macosx_10_9_x86_64.whlc820a93b0255bc360f53eca31a0e676fd1101f673dda8da93454a12e23fc5f7a  numpy-2.2.6-cp311-cp311-macosx_11_0_arm64.whl3d70692235e759f260c3d837193090014aebdf026dfd167834bcba43e30c2a42  numpy-2.2.6-cp311-cp311-macosx_14_0_arm64.whl481b49095335f8eed42e39e8041327c05b0f6f4780488f61286ed3c01368d491  numpy-2.2.6-cp311-cp311-macosx_14_0_x86_64.whlb64d8d4d17135e00c8e346e0a738deb17e754230d7e0810ac5012750bbd85a5a  numpy-2.2.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whlba10f8411898fc418a521833e014a77d3ca01c15b0c6cdcce6a0d2897e6dbbdf  numpy-2.2.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whlbd48227a919f1bafbdda0583705e547892342c26fb127219d60a5c36882609d1  numpy-2.2.6-cp311-cp311-musllinux_1_2_aarch64.whl9551a499bf125c1d4f9e250377c1ee2eddd02e01eac6644c080162c0c51778ab  numpy-2.2.6-cp311-cp311-musllinux_1_2_x86_64.whl0678000bb9ac1475cd454c6b8c799206af8107e310843532b04d49649c717a47  numpy-2.2.6-cp311-cp311-win32.whle8213002e427c69c45a52bbd94163084025f533a55a59d6f9c5b820774ef3303  numpy-2.2.6-cp311-cp311-win_amd64.whl41c5a21f4a04fa86436124d388f6ed60a9343a6f767fced1a8a71c3fbca038ff  numpy-2.2.6-cp312-cp312-macosx_10_13_x86_64.whlde749064336d37e340f640b05f24e9e3dd678c57318c7289d222a8a2f543e90c  numpy-2.2.6-cp312-cp312-macosx_11_0_arm64.whl894b3a42502226a1cac872f840030665f33326fc3dac8e57c607905773cdcde3  numpy-2.2.6-cp312-cp312-macosx_14_0_arm64.whl71594f7c51a18e728451bb50cc60a3ce4e6538822731b2933209a1f3614e9282  numpy-2.2.6-cp312-cp312-macosx_14_0_x86_64.whlf2618db89be1b4e05f7a1a847a9c1c0abd63e63a1607d892dd54668dd92faf87  numpy-2.2.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whlfd83c01228a688733f1ded5201c678f0c53ecc1006ffbc404db9f7a899ac6249  numpy-2.2.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl37c0ca431f82cd5fa716eca9506aefcabc247fb27ba69c5062a6d3ade8cf8f49  numpy-2.2.6-cp312-cp312-musllinux_1_2_aarch64.whlfe27749d33bb772c80dcd84ae7e8df2adc920ae8297400dabec45f0dedb3f6de  numpy-2.2.6-cp312-cp312-musllinux_1_2_x86_64.whl4eeaae00d789f66c7a25ac5f34b71a7035bb474e679f410e5e1a94deb24cf2d4  numpy-2.2.6-cp312-cp312-win32.whlc1f9540be57940698ed329904db803cf7a402f3fc200bfe599334c9bd84a40b2  numpy-2.2.6-cp312-cp312-win_amd64.whl0811bb762109d9708cca4d0b13c4f67146e3c3b7cf8d34018c722adb2d957c84  numpy-2.2.6-cp313-cp313-macosx_10_13_x86_64.whl287cc3162b6f01463ccd86be154f284d0893d2b3ed7292439ea97eafa8170e0b  numpy-2.2.6-cp313-cp313-macosx_11_0_arm64.whlf1372f041402e37e5e633e586f62aa53de2eac8d98cbfb822806ce4bbefcb74d  numpy-2.2.6-cp313-cp313-macosx_14_0_arm64.whl55a4d33fa519660d69614a9fad433be87e5252f4b03850642f88993f7b2ca566  numpy-2.2.6-cp313-cp313-macosx_14_0_x86_64.whlf92729c95468a2f4f15e9bb94c432a9229d0d50de67304399627a943201baa2f  numpy-2.2.6-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl1bc23a79bfabc5d056d106f9befb8d50c31ced2fbc70eedb8155aec74a45798f  numpy-2.2.6-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whle3143e4451880bed956e706a3220b4e5cf6172ef05fcc397f6f36a550b1dd868  numpy-2.2.6-cp313-cp313-musllinux_1_2_aarch64.whlb4f13750ce79751586ae2eb824ba7e1e8dba64784086c98cdbbcc6a42112ce0d  numpy-2.2.6-cp313-cp313-musllinux_1_2_x86_64.whl5beb72339d9d4fa36522fc63802f469b13cdbe4fdab4a288f0c441b74272ebfd  numpy-2.2.6-cp313-cp313-win32.whlb0544343a702fa80c95ad5d3d608ea3599dd54d4632df855e4c8d24eb6ecfa1c  numpy-2.2.6-cp313-cp313-win_amd64.whl0bca768cd85ae743b2affdc762d617eddf3bcf8724435498a1e80132d04879e6  numpy-2.2.6-cp313-cp313t-macosx_10_13_x86_64.whlfc0c5673685c508a142ca65209b4e79ed6740a4ed6b2267dbba90f34b0b3cfda  numpy-2.2.6-cp313-cp313t-macosx_11_0_arm64.whl5bd4fc3ac8926b3819797a7c0e2631eb889b4118a9898c84f585a54d475b7e40  numpy-2.2.6-cp313-cp313t-macosx_14_0_arm64.whlfee4236c876c4e8369388054d02d0e9bb84821feb1a64dd59e137e6511a551f8  numpy-2.2.6-cp313-cp313t-macosx_14_0_x86_64.whle1dda9c7e08dc141e0247a5b8f49cf05984955246a327d4c48bda16821947b2f  numpy-2.2.6-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whlf447e6acb680fd307f40d3da4852208af94afdfab89cf850986c3ca00562f4fa  numpy-2.2.6-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl389d771b1623ec92636b0786bc4ae56abafad4a4c513d36a55dce14bd9ce8571  numpy-2.2.6-cp313-cp313t-musllinux_1_2_aarch64.whl8e9ace4a37db23421249ed236fdcdd457d671e25146786dfc96835cd951aa7c1  numpy-2.2.6-cp313-cp313t-musllinux_1_2_x86_64.whl038613e9fb8c72b0a41f025a7e4c3f0b7a1b5d768ece4796b674c8f3fe13efff  numpy-2.2.6-cp313-cp313t-win32.whl6031dd6dfecc0cf9f668681a37648373bddd6421fff6c66ec1624eed0180ee06  numpy-2.2.6-cp313-cp313t-win_amd64.whl0b605b275d7bd0c640cad4e5d30fa701a8d59302e127e5f79138ad62762c3e3d  numpy-2.2.6-pp310-pypy310_pp73-macosx_10_15_x86_64.whl7befc596a7dc9da8a337f79802ee8adb30a552a94f792b9c9d18c840055907db  numpy-2.2.6-pp310-pypy310_pp73-macosx_14_0_x86_64.whlce47521a4754c8f4593837384bd3424880629f718d87c5d44f8ed763edd63543  numpy-2.2.6-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whld042d24c90c41b54fd506da306759e06e568864df8ec17ccc17e9e884634fd00  numpy-2.2.6-pp310-pypy310_pp73-win_amd64.whle29554e2bef54a90aa5cc07da6ce955accb83f21ab5de01a62c8478897b264fd  numpy-2.2.6.tar.gz
Assets5
Loading
BryteLite, Safari77, agriyakhetarpal, MoisesAlvesCostaDev, richiepagard, chfly2000, wanderingeek, etiennelndr, and mattyhosseini reacted with thumbs up emojikikocorreoso, agriyakhetarpal, ebb-earl-co, and wanderingeek reacted with hooray emojiagriyakhetarpal, moomdriver, and wanderingeek reacted with heart emojijorenham, aaravind100, agriyakhetarpal, and wanderingeek reacted with rocket emoji
14 people reacted

[8]ページ先頭

©2009-2025 Movatter.jp