Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Releases: numpy/numpy

2.3.5 (Nov 16, 2025)

16 Nov 23:15
Immutablerelease. Only release title and notes can be modified.
v2.3.5
This tag was signed with the committer’sverified signature.
charris Charles Harris
GPG key ID:679F228377C5247B
Verified
Learn about vigilant mode.
c3d60fc
This commit was created on GitHub.com and signed with GitHub’sverified signature.
GPG key ID:B5690EEEBB952194
Verified
Learn about vigilant mode.

Choose a tag to compare

NumPy 2.3.5 Release Notes

The NumPy 2.3.5 release is a patch release split between a number of maintenance
updates and bug fixes. This release supports Python versions 3.11-3.14.

Contributors

A total of 10 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.

  • Aaron Kollasch +
  • Charles Harris
  • Joren Hammudoglu
  • Matti Picus
  • Nathan Goldbaum
  • Rafael Laboissière +
  • Sayed Awad
  • Sebastian Berg
  • Warren Weckesser
  • Yasir Ashfaq +

Pull requests merged

A total of 16 pull requests were merged for this release.

  • #29979: MAINT: Prepare 2.3.x for further development
  • #30026: SIMD, BLD: Backport FPMATH mode on x86-32 and filter successor...
  • #30029: MAINT: Backport write_release.py
  • #30041: TYP: Various typing updates
  • #30059: BUG: Fix np.strings.slice if stop=None or start and stop >= len...
  • #30063: BUG: Fix np.strings.slice if start > stop
  • #30076: BUG: avoid negating INT_MIN in PyArray_Round implementation (#30071)
  • #30090: BUG: Fix resize when it contains references (#29970)
  • #30129: BLD: update scipy-openblas, use -Dpkg_config_path (#30049)
  • #30130: BUG: Avoid compilation error of wrapper file generated with SWIG...
  • #30157: BLD: use scipy-openblas 0.3.30.7 (#30132)
  • #30158: DOC: Remove nonexistentorder parameter docs ofma.asanyarray...
  • #30185: BUG: Fix check of PyMem_Calloc return value. (#30176)
  • #30217: DOC: fix links for newly rebuilt numpy-tutorials site
  • #30218: BUG: Fix build on s390x with clang (#30214)
  • #30237: ENH: Make FPE blas check a runtime check for all apple arm systems
Assets6
Loading
yoshoku, github-actions[bot], agriyakhetarpal, kaanrkaraman, binbjz, aaronkollasch, Christopher-K-Long, selasley, camUrban, MilanStaffehl, and 5 more reacted with thumbs up emojigithub-actions[bot], agriyakhetarpal, ebb-earl-co, binbjz, aaronkollasch, CoolCat467, and Dvdandrades reacted with hooray emojijorenham, agriyakhetarpal, binbjz, and aaronkollasch reacted with heart emojigithub-actions[bot], agriyakhetarpal, binbjz, and aaronkollasch reacted with rocket emoji
19 people reacted

v2.3.4 (Oct 15, 2025)

15 Oct 23:15
Immutablerelease. Only release title and notes can be modified.
v2.3.4
This tag was signed with the committer’sverified signature.
charris Charles Harris
GPG key ID:679F228377C5247B
Verified
Learn about vigilant mode.
1458b9e
This commit was created on GitHub.com and signed with GitHub’sverified signature.
GPG key ID:B5690EEEBB952194
Verified
Learn about vigilant mode.

Choose a tag to compare

NumPy 2.3.4 Release Notes

The NumPy 2.3.4 release is a patch release split between a number of maintenance
updates and bug fixes. This release supports Python versions 3.11-3.14. This
release is based on Python 3.14.0 final.

Changes

Thenpymath andnpyrandom libraries now have a.lib rather than a
.a file extension on win-arm64, for compatibility for building with MSVC and
setuptools. Please note that using these static libraries is discouraged
and for existing projects using it, it's best to use it with a matching
compiler toolchain, which isclang-cl on Windows on Arm.

(gh-29750)

Contributors

A total of 17 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.

  • !DWesl
  • Charles Harris
  • Christian Barbia +
  • Evgeni Burovski
  • Joren Hammudoglu
  • Maaz +
  • Mateusz Sokół
  • Matti Picus
  • Nathan Goldbaum
  • Ralf Gommers
  • Riku Sakamoto +
  • Sandeep Gupta +
  • Sayed Awad
  • Sebastian Berg
  • Sergey Fedorov +
  • Warren Weckesser
  • dependabot[bot]

Pull requests merged

A total of 30 pull requests were merged for this release.

  • #29725: MAINT: Prepare 2.3.x for further development
  • #29781: MAINT: Pin some upstream dependences
  • #29782: BLD: enable x86-simd-sort to build on KNL with -mavx512f
  • #29783: BUG: Include python-including headers first (#29281)
  • #29784: TYP: fix np.number and np.*integer method declaration
  • #29785: TYP: mypy 1.18.1
  • #29788: TYP: replace scalar type __init__ with __new__
  • #29790: BUG: Fixdtype refcount in__array__ (#29715)
  • #29791: TYP: fix method declarations in floating, timedelta64, and datetime64Backport
  • #29792: MAINT: delete unused variables in unary logical dispatch
  • #29797: BUG: Fix pocketfft umath strides for AIX compatibility (#29768)
  • #29798: BUG: np.setbufsize should raise ValueError for negative input
  • #29799: BUG: Fix assert in nditer buffer setup
  • #29800: BUG: Stable ScalarType ordering
  • #29838: TST: Pin pyparsing to avoid matplotlib errors.
  • #29839: BUG: linalg: emit a MemoryError on a malloc failure (#29811)
  • #29840: BLD: change file extension for libnpymath on win-arm64 from .a...
  • #29864: CI: Fix loongarch64 CI (#29856)
  • #29865: TYP: Various typing fixes
  • #29910: BUG: Fix float16-sort failures on 32-bit x86 MSVC (#29908)
  • #29911: TYP: add missing__slots__ (#29901)
  • #29913: TYP: wrong argument defaults intesting._private (#29902)
  • #29920: BUG: avoid segmentation fault in string_expandtabs_length_promoter
  • #29921: BUG: Fix INT_MIN % -1 to return 0 for all signed integer types...
  • #29922: TYP: minor fixes related toerrstate (#29914)
  • #29923: TST: use requirements/test_requirements across CI (#29919)
  • #29926: BUG: fix negative samples generated by Wald distribution (#29609)
  • #29940: MAINT: Bump pypa/cibuildwheel from 3.1.4 to 3.2.1
  • #29949: STY: rename@classmethod arg to cls
  • #29950: MAINT: Simplify string arena growth strategy (#29885)
Loading
Molkree, chfly2000, LuisMiSanVe, kibitzing, selasley, ldlsn1, Christopher-K-Long, x5dfg, LakshitSinghBishtTM, frankpfan, and 3 more reacted with thumbs up emojiCoolCat467, yoshoku, riku-sakamoto, seiko2plus, kibitzing, and ahmad777x86 reacted with hooray emojiImadSaddik, x5dfg, and ahmad777x86 reacted with heart emoji
18 people reacted

2.3.3 (Sep 9, 2025)

09 Sep 17:37
v2.3.3
This tag was signed with the committer’sverified signature.
charris Charles Harris
GPG key ID:679F228377C5247B
Verified
Learn about vigilant mode.
f2a77a7
This commit was created on GitHub.com and signed with GitHub’sverified signature.
GPG key ID:B5690EEEBB952194
Verified
Learn about vigilant mode.

Choose a tag to compare

NumPy 2.3.3 Release Notes

The NumPy 2.3.3 release is a patch release split between a number of maintenance
updates and bug fixes. This release supports Python versions 3.11-3.14. Note
that the 3.14.0 final is currently expected in Oct, 2025. This release is based
on 3.14.0rc2.

Contributors

A total of 13 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.

  • Aleksandr A. Voyt +
  • Bernard Roesler +
  • Charles Harris
  • Hunter Hogan +
  • Joren Hammudoglu
  • Maanas Arora
  • Matti Picus
  • Nathan Goldbaum
  • Raghuveer Devulapalli
  • Sanjay Kumar Sakamuri Kamalakar +
  • Tobias Markus +
  • Warren Weckesser
  • Zebreus +

Pull requests merged

A total of 23 pull requests were merged for this release.

  • #29440: MAINT: Prepare 2.3.x for further development.
  • #29446: BUG: Fix test_configtool_pkgconfigdir to resolve PKG_CONFIG_DIR...
  • #29447: BLD: allow targeting webassembly without emscripten
  • #29460: MAINT: Backport write_release.py
  • #29473: MAINT: Bump pypa/cibuildwheel from 3.1.0 to 3.1.2
  • #29500: BUG: Always return a real dtype from linalg.cond (gh-18304) (#29333)
  • #29501: MAINT: Add .file entry to all .s SVML files
  • #29556: BUG: Casting from one timedelta64 to another didn't handle NAT.
  • #29562: BLD: update vendored Meson to 1.8.3 [wheel build]
  • #29563: BUG: Fix metadata not roundtripping when pickling datetime (#29555)
  • #29587: TST: update link and version for Intel SDE download
  • #29593: TYP: addsorted kwarg tounique
  • #29672: MAINT: Update pythoncapi-compat from main.
  • #29673: MAINT: Update cibuildwheel.
  • #29674: MAINT: Fix typo in wheels.yml
  • #29683: BUG, BLD: Correct regex for ppc64 VSX3/VSX4 feature detection
  • #29684: TYP: ndarray.fill() takes no keyword arguments
  • #29685: BUG: avoid thread-unsafe refcount check in temp elision
  • #29687: CI: replace comment-hider action in mypy_primer workflow
  • #29689: BLD: Add missing <unordered_map> include
  • #29691: BUG: use correct input dtype in flatiter assignment
  • #29700: TYP: fix np.bool method declarations
  • #29701: BUG: Correct ambiguous logic for s390x CPU feature detection
Loading
leo-smi, chfly2000, Molkree, phdparedes, yabuz87, duong-ngo, and morgen-code reacted with thumbs up emojiaaravind100, wanderingeek, phdparedes, duong-ngo, and RushabhMehta2005 reacted with rocket emoji
10 people reacted

v2.3.2 (Jul 24, 2025)

24 Jul 21:44
v2.3.2
This tag was signed with the committer’sverified signature.
charris Charles Harris
GPG key ID:679F228377C5247B
Verified
Learn about vigilant mode.
bc5e4f8
This commit was created on GitHub.com and signed with GitHub’sverified signature.
GPG key ID:B5690EEEBB952194
Verified
Learn about vigilant mode.

Choose a tag to compare

NumPy 2.3.2 Release Notes

The NumPy 2.3.2 release is a patch release with a number of bug fixes
and maintenance updates. The highlights are:

  • Wheels for Python 3.14.0rc1
  • PyPy updated to the latest stable release
  • OpenBLAS updated to 0.3.30

This release supports Python versions 3.11-3.14

Contributors

A total of 9 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • !DWesl
  • Charles Harris
  • Joren Hammudoglu
  • Maanas Arora
  • Marco Edward Gorelli
  • Matti Picus
  • Nathan Goldbaum
  • Sebastian Berg
  • kostayScr +

Pull requests merged

A total of 16 pull requests were merged for this release.

  • #29256: MAINT: Prepare 2.3.x for further development
  • #29283: TYP: Work around a mypy issue with bool arrays (#29248)
  • #29284: BUG: fix fencepost error in StringDType internals
  • #29287: BUG: handle case in mapiter where descriptors might get replaced...
  • #29350: BUG: Fix shape error path in array-interface
  • #29412: BUG: Allow reading non-npy files in npz and add test
  • #29413: TST: Avoid uninitialized values in test (#29341)
  • #29414: BUG: Fix reference leakage for output arrays in reduction functions
  • #29415: BUG: fix casting issue in center, ljust, rjust, and zfill (#29369)
  • #29416: TYP: Fix overloads innp.char.array andnp.char.asarray...
  • #29417: BUG: Any dtype should callsquare onarr \*\* 2 (#29392)
  • #29424: MAINT: use a stable pypy release in CI
  • #29425: MAINT: Support python 314rc1
  • #29429: MAINT: Update highway to match main.
  • #29430: BLD: use github to build macos-arm64 wheels with OpenBLAS and...
  • #29437: BUG: fix datetime/timedelta hash memory leak (#29411)

Checksums

MD5

e35c637ea9fba77eabfdf70e26eaa16d  numpy-2.3.2-cp311-cp311-macosx_10_9_x86_64.whl3dede42d11c843cfacff422f65a80e47  numpy-2.3.2-cp311-cp311-macosx_11_0_arm64.whlf5c485a43210eb3541b254c8c9d6ac9e  numpy-2.3.2-cp311-cp311-macosx_14_0_arm64.whl658950eb37e19b42920635ee60830a1d  numpy-2.3.2-cp311-cp311-macosx_14_0_x86_64.whl9a864a280798829cc522521bc5d9c7e2  numpy-2.3.2-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl085e1ff7746d327a1320672ab86966c3  numpy-2.3.2-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl6acefa06c38bc616352b76174d4f19d2  numpy-2.3.2-cp311-cp311-musllinux_1_2_aarch64.whl4dd3469970dbfba60dad41b9923c5a5a  numpy-2.3.2-cp311-cp311-musllinux_1_2_x86_64.whlad090139b8b872a9157b92c840566c5e  numpy-2.3.2-cp311-cp311-win32.whl09b023f808432e60633e36a13630dc13  numpy-2.3.2-cp311-cp311-win_amd64.whlc80f2a1c4c829ccb6745a6d0803b7177  numpy-2.3.2-cp311-cp311-win_arm64.whl307fc28e0c630dbc5a6ff4051ee9ec6c  numpy-2.3.2-cp312-cp312-macosx_10_13_x86_64.whl4af1ffb81bdec235aef1b9bdf7c1566d  numpy-2.3.2-cp312-cp312-macosx_11_0_arm64.whl8003e8df1badaffee163a603bf05656b  numpy-2.3.2-cp312-cp312-macosx_14_0_arm64.whle703fab1c371fd27389401caa34a5cbd  numpy-2.3.2-cp312-cp312-macosx_14_0_x86_64.whl5fdc228f15ec5de78b89c7aa4c137019  numpy-2.3.2-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whlf3bc10b89911c09777c4c5d9752f35b0  numpy-2.3.2-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl5d0128aa0f6aa3a5122364a727a72eba  numpy-2.3.2-cp312-cp312-musllinux_1_2_aarch64.whlef392070c44709321d7f87ab15bbd674  numpy-2.3.2-cp312-cp312-musllinux_1_2_x86_64.whl909e05dcd1164cc02d5fccc1cc6c9ca6  numpy-2.3.2-cp312-cp312-win32.whl3ba0b657682fc54d9433b4d7244c9264  numpy-2.3.2-cp312-cp312-win_amd64.whl05755e8c591b1ac2fff05a06d76ac414  numpy-2.3.2-cp312-cp312-win_arm64.whlc1e323fa1986bc99ae96c46126a30f93  numpy-2.3.2-cp313-cp313-macosx_10_13_x86_64.whl9a89327ef3550581017ea6e2a47c1a8e  numpy-2.3.2-cp313-cp313-macosx_11_0_arm64.whl3c7236116911c5c19de0091d7ac81f65  numpy-2.3.2-cp313-cp313-macosx_14_0_arm64.whl1809c7adafae6492741864cf4dda7d1e  numpy-2.3.2-cp313-cp313-macosx_14_0_x86_64.whlee68f94ec5f9c0c7f9423d7329bc085e  numpy-2.3.2-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl24c4e95f0a615356787e2920378e5c6f  numpy-2.3.2-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl5c53a2c915d177b7c305c0386ba21b43  numpy-2.3.2-cp313-cp313-musllinux_1_2_aarch64.whlc4607ea441320a0078d942ca21ef2411  numpy-2.3.2-cp313-cp313-musllinux_1_2_x86_64.whl09f2fdeb35d952751ba269ca5fa77e7a  numpy-2.3.2-cp313-cp313-win32.whl47a7326544ce192df844b3e9750c7704  numpy-2.3.2-cp313-cp313-win_amd64.whl9b5adab8ee4eb97ccf90d73d63671db4  numpy-2.3.2-cp313-cp313-win_arm64.whl7169baf4160b9a75790650cef23a73e1  numpy-2.3.2-cp313-cp313t-macosx_10_13_x86_64.whl0338f2a78981d84d84e5f693ed6112d5  numpy-2.3.2-cp313-cp313t-macosx_11_0_arm64.whlb0c1c28add9716f7cee433d53fb43067  numpy-2.3.2-cp313-cp313t-macosx_14_0_arm64.whld2d8d43c535184095550420169858b90  numpy-2.3.2-cp313-cp313t-macosx_14_0_x86_64.whl745bb6930958f4d7980cd705621abc25  numpy-2.3.2-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl96412f8c9687d468e260aacdfb9cca02  numpy-2.3.2-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl11ce971fe997bf5c0784516db85891ff  numpy-2.3.2-cp313-cp313t-musllinux_1_2_aarch64.whle71ba272e9db74bc753ca056e76fdf5b  numpy-2.3.2-cp313-cp313t-musllinux_1_2_x86_64.whl82feb6822f2cf04a9edf38cf7f7d4806  numpy-2.3.2-cp313-cp313t-win32.whlc6c8a1a2e94a9fc2dad9d161a6666e54  numpy-2.3.2-cp313-cp313t-win_amd64.whl29e65f132c4a916214a0e82bca214717  numpy-2.3.2-cp313-cp313t-win_arm64.whl2b99d343001495b182027843bf2148b2  numpy-2.3.2-cp314-cp314-macosx_10_13_x86_64.whl40d04ac18cd9db3c380224d3d5607770  numpy-2.3.2-cp314-cp314-macosx_11_0_arm64.whl871631874c6839719d1c1b3ad81835cd  numpy-2.3.2-cp314-cp314-macosx_14_0_arm64.whl4d4098888f19de85dd18646c2f955cd2  numpy-2.3.2-cp314-cp314-macosx_14_0_x86_64.whl813e47e3c07cd28bf0458a1e513d6619  numpy-2.3.2-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl1fe080566baca813e6ac4635011a408a  numpy-2.3.2-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whlbd44ab38b53a4b5b6130b6f01ffaf5fa  numpy-2.3.2-cp314-cp314-musllinux_1_2_aarch64.whlf2fda217bec39ede344b42fef2cbd9e5  numpy-2.3.2-cp314-cp314-musllinux_1_2_x86_64.whlc02218de0d0666769c91513eafaf251f  numpy-2.3.2-cp314-cp314-win32.whld419eb806a6f5debb366d4bcf0f5bde0  numpy-2.3.2-cp314-cp314-win_amd64.whl851529ffdf2b0d4b66eb1ac99c24da3e  numpy-2.3.2-cp314-cp314-win_arm64.whl2306e8b73fcd2d46116c6a95034e4d3a  numpy-2.3.2-cp314-cp314t-macosx_10_13_x86_64.whlb4d4ce3339cb9f0b0f2b339db803f39c  numpy-2.3.2-cp314-cp314t-macosx_11_0_arm64.whl6ae336ac461d5d89811c8a236b442842  numpy-2.3.2-cp314-cp314t-macosx_14_0_arm64.whl351f35dd00bfb35e6cad2447a14c7cdf  numpy-2.3.2-cp314-cp314t-macosx_14_0_x86_64.whl0e0b26b34024f24a5f59809a1778ace0  numpy-2.3.2-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whlbc77a7f5826bb0a38154d31d8444abb7  numpy-2.3.2-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whlcd1e335e2a8437339475db12ee30f26d  numpy-2.3.2-cp314-cp314t-musllinux_1_2_aarch64.whl5c8093e713bd7e5f8512458d53fefeed  numpy-2.3.2-cp314-cp314t-musllinux_1_2_x86_64.whl66125a7e4e311fc2dedfa8c25ee577f2  numpy-2.3.2-cp314-cp314t-win32.whl97713f41a5d4a08e8ed3d629d07678d3  numpy-2.3.2-cp314-cp314t-win_amd64.whl848c4c409b643c2b42c431f51b310095  numpy-2.3.2-cp314-cp314t-win_arm64.whle240eed2fc098f7a0ae9813abead8a05  numpy-2.3.2-pp311-pypy311_pp73-macosx_10_15_x86_64.whl7e46ebe46530596019ae6b5db8a7a564  numpy-2.3.2-pp311-pypy311_pp73-macosx_11_0_arm64.whl82077182e608a0d366eba700902463b5  numpy-2.3.2-pp311-pypy311_pp73-macosx_14_0_arm64.whl67db17064907cd22a74676b50de1ab6d  numpy-2.3.2-pp311-pypy311_pp73-macosx_14_0_x86_64.whl6d59903ecd732d53dd230ca59cdc2c34  numpy-2.3.2-pp311-pypy311_pp73-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whlbaae8d6875e1de409ffef875896c4b4f  numpy-2.3.2-pp311-pypy311_pp73-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl5d92d6c39f2f0b28149ed15437b13cf7  numpy-2.3.2-pp311-pypy311_pp73-win_amd64.whlf8d3d3b3ecd2b6e98889e88f6bbdc1a3  numpy-2.3.2.tar.gz

SHA256

852ae5bed3478b92f093e30f785c98e0cb62fa0a939ed057c31716e18a7a22b9  numpy-2.3.2-cp311-cp311-macosx_10_9_x86_64.whl7a0e27186e781a69959d0230dd9909b5e26024f8da10683bd6344baea1885168  numpy-2.3.2-cp311-cp311-macosx_11_0_arm64.whlf0a1a8476ad77a228e41619af2fa9505cf69df928e9aaa165746584ea17fed2b  numpy-2.3.2-cp311-cp311-macosx_14_0_arm64.whlcbc95b3813920145032412f7e33d12080f11dc776262df1712e1638207dde9e8  numpy-2.3.2-cp311-cp311-macosx_14_0_x86_64.whlf75018be4980a7324edc5930fe39aa391d5734531b1926968605416ff58c332d  numpy-2.3.2-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl20b8200721840f5621b7bd03f8dcd78de33ec522fc40dc2641aa09537df010c3  numpy-2.3.2-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl1f91e5c028504660d606340a084db4b216567ded1056ea2b4be4f9d10b67197f  numpy-2.3.2-cp311-cp3...
Read more
Loading
jorenham, begin-again, dweindl, romulorcruz, wanderingeek, Sifatullahsolo, wx-ys, Ananya-PKumar, nadiazada, chfly2000, and 4 more reacted with thumbs up emojijorenham, wanderingeek, Ananya-PKumar, codybtc, and JeissonGAvila reacted with laugh emojijorenham, wanderingeek, Ananya-PKumar, and JeissonGAvila reacted with hooray emojijorenham, Ananya-PKumar, and garciadias reacted with heart emojijorenham, aaravind100, and Ananya-PKumar reacted with rocket emojijorenham and Ananya-PKumar reacted with eyes emoji
18 people reacted

v2.3.1 (Jun 21, 2025)

21 Jun 13:02
v2.3.1
This tag was signed with the committer’sverified signature.
charris Charles Harris
GPG key ID:679F228377C5247B
Verified
Learn about vigilant mode.
4d833e5
This commit was created on GitHub.com and signed with GitHub’sverified signature.
GPG key ID:B5690EEEBB952194
Verified
Learn about vigilant mode.

Choose a tag to compare

NumPy 2.3.1 Release Notes

The NumPy 2.3.1 release is a patch release with several bug fixes,
annotation improvements, and better support for OpenBSD. Highlights are:

  • Fix bug inmatmul for non-contiguous out kwarg parameter
  • Fix for Accelerate runtime warnings on M4 hardware
  • Fix new in NumPy 2.3.0np.vectorize casting errors
  • Improved support of cpu features for FreeBSD and OpenBSD

This release supports Python versions 3.11-3.13, Python 3.14 will be
supported when it is released.

Contributors

A total of 9 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Brad Smith +
  • Charles Harris
  • Developer-Ecosystem-Engineering
  • François Rozet
  • Joren Hammudoglu
  • Matti Picus
  • Mugundan Selvanayagam
  • Nathan Goldbaum
  • Sebastian Berg

Pull requests merged

A total of 12 pull requests were merged for this release.

  • #29140: MAINT: Prepare 2.3.x for further development
  • #29191: BUG: fix matmul with transposed out arg (#29179)
  • #29192: TYP: Backport typing fixes and improvements.
  • #29205: BUG: Revertnp.vectorize casting to legacy behavior (#29196)
  • #29222: TYP: Backport typing fixes
  • #29233: BUG: avoid negating unsigned integers in resize implementation...
  • #29234: TST: Fix test that uses uninitialized memory (#29232)
  • #29235: BUG: Address interaction between SME and FPSR (#29223)
  • #29237: BUG: Enforce integer limitation in concatenate (#29231)
  • #29238: CI: Add support for building NumPy with LLVM for Win-ARM64
  • #29241: ENH: Detect CPU features on OpenBSD ARM and PowerPC64
  • #29242: ENH: Detect CPU features on FreeBSD / OpenBSD RISC-V64.

Checksums

MD5

c353ac75ea083594a6cb674b5f943d83  numpy-2.3.1-cp311-cp311-macosx_10_9_x86_64.whlfdb5454e372d399cf570868ea7e2b192  numpy-2.3.1-cp311-cp311-macosx_11_0_arm64.whldc0f17823bb1826519d6974c2b95fa90  numpy-2.3.1-cp311-cp311-macosx_14_0_arm64.whl7e3118fe383af697a8868ba191b9eac0  numpy-2.3.1-cp311-cp311-macosx_14_0_x86_64.whl705aafad1250aa3e41502c5710a26ed5  numpy-2.3.1-cp311-cp311-manylinux_2_28_aarch64.whl003d6268344577b804205098e11cdaa0  numpy-2.3.1-cp311-cp311-manylinux_2_28_x86_64.whl7d0c0fd11c573c510a25dd7513e4ae0a  numpy-2.3.1-cp311-cp311-musllinux_1_2_aarch64.whld99f993ef05966ead99df736df18b521  numpy-2.3.1-cp311-cp311-musllinux_1_2_x86_64.whl96933cac225fb8b60a9cc2c0efa14d36  numpy-2.3.1-cp311-cp311-win32.whlf777712419f3dd586ac294ddce84b274  numpy-2.3.1-cp311-cp311-win_amd64.whl1fe2615669de5c271a48b99356fa3528  numpy-2.3.1-cp311-cp311-win_arm64.whlfccca48846d41d38966cc75395787f79  numpy-2.3.1-cp312-cp312-macosx_10_13_x86_64.whlfa389e78db43f3c2841ce127c1205422  numpy-2.3.1-cp312-cp312-macosx_11_0_arm64.whl2554944d786abd284db4a699d4edfe1e  numpy-2.3.1-cp312-cp312-macosx_14_0_arm64.whl7fec491834803a8ffa3765ef3d03cea5  numpy-2.3.1-cp312-cp312-macosx_14_0_x86_64.whl7c2d8b4412f12b9b02e98349fb5cd760  numpy-2.3.1-cp312-cp312-manylinux_2_28_aarch64.whl94dcc636a2f2478666d820e21fc91682  numpy-2.3.1-cp312-cp312-manylinux_2_28_x86_64.whl404128939d89d1ea26be105fb03b5028  numpy-2.3.1-cp312-cp312-musllinux_1_2_aarch64.whle89d8d460060e8315c3ba68b2b649db0  numpy-2.3.1-cp312-cp312-musllinux_1_2_x86_64.whla767bd10267ad6baef9655fb08db3fd3  numpy-2.3.1-cp312-cp312-win32.whlf753b957fcb7f06f043cf9c6114f294c  numpy-2.3.1-cp312-cp312-win_amd64.whl58ffa7c69587f9bf8f6025794fec7f63  numpy-2.3.1-cp312-cp312-win_arm64.whl22a2a9a568dd0866b288ad8bd8bb3e90  numpy-2.3.1-cp313-cp313-macosx_10_13_x86_64.whl5e1593fcc8bb3447e995622f2dca017b  numpy-2.3.1-cp313-cp313-macosx_11_0_arm64.whl894d56072db9358e0096538710a1a8ce  numpy-2.3.1-cp313-cp313-macosx_14_0_arm64.whl593cb311f5170cbcfcefb587cdcc70bb  numpy-2.3.1-cp313-cp313-macosx_14_0_x86_64.whl22935447e75acda4075c57b332c0236a  numpy-2.3.1-cp313-cp313-manylinux_2_28_aarch64.whl5aa2040f947204e15e95ec87461a7e91  numpy-2.3.1-cp313-cp313-manylinux_2_28_x86_64.whl6516337f0347974fada21a23a818be64  numpy-2.3.1-cp313-cp313-musllinux_1_2_aarch64.whlec956eb37b874b1ec52d6ffccda6ef65  numpy-2.3.1-cp313-cp313-musllinux_1_2_x86_64.whl0aaed62cb1bae9c1b1a44d1a4eda2db7  numpy-2.3.1-cp313-cp313-win32.whl57829996fc12f649547f0258443bbb20  numpy-2.3.1-cp313-cp313-win_amd64.whla0d0dd68bbf0ab378142b2daff0a8e06  numpy-2.3.1-cp313-cp313-win_arm64.whlb22dc66970a8017e4d0ce83ef8c938af  numpy-2.3.1-cp313-cp313t-macosx_10_13_x86_64.whl93c17afb38cf8fd876ca2bd9ea7e9612  numpy-2.3.1-cp313-cp313t-macosx_11_0_arm64.whl283064dabb434f3dbc1a5e2514b9cb29  numpy-2.3.1-cp313-cp313t-macosx_14_0_arm64.whl5b8c778033c98b4a0ce6e5bfc7625f05  numpy-2.3.1-cp313-cp313t-macosx_14_0_x86_64.whl2340bd78962f194bcdbee6531d954acc  numpy-2.3.1-cp313-cp313t-manylinux_2_28_aarch64.whl43a92ad37dc68d719bdeeeb65b3f4d2f  numpy-2.3.1-cp313-cp313t-manylinux_2_28_x86_64.whleb110c4aa0d73558187397ddfba179ad  numpy-2.3.1-cp313-cp313t-musllinux_1_2_aarch64.whl1f7f0076411ed4afa9c4553eb06564cb  numpy-2.3.1-cp313-cp313t-musllinux_1_2_x86_64.whl30f30dde6f806070b2164e48a632a350  numpy-2.3.1-cp313-cp313t-win32.whl2375e2f2a5b75c5f5c908af6bb85d639  numpy-2.3.1-cp313-cp313t-win_amd64.whlb421530a87bb8e9e3d4dc34c75d5d953  numpy-2.3.1-cp313-cp313t-win_arm64.whlb1bc3cbf9cd407964b2bb25dfe86ca3d  numpy-2.3.1-pp311-pypy311_pp73-macosx_10_15_x86_64.whl4c2e234eb4f346f362d6e6c620fa7a56  numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_arm64.whl98ec3c19a365d0ae926113bb349e323b  numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_x86_64.whle0c7bcd526cde46489d5a8f12e06cc77  numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl41f535aa1f1acaf3d8a32a462a4cd4c8  numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl2abf906a6688c98693045cbbc655d5b7  numpy-2.3.1-pp311-pypy311_pp73-win_amd64.whl886559a4c541298b37245e389ce8bf10  numpy-2.3.1.tar.gz

SHA256

6ea9e48336a402551f52cd8f593343699003d2353daa4b72ce8d34f66b722070  numpy-2.3.1-cp311-cp311-macosx_10_9_x86_64.whl5ccb7336eaf0e77c1635b232c141846493a588ec9ea777a7c24d7166bb8533ae  numpy-2.3.1-cp311-cp311-macosx_11_0_arm64.whl0bb3a4a61e1d327e035275d2a993c96fa786e4913aa089843e6a2d9dd205c66a  numpy-2.3.1-cp311-cp311-macosx_14_0_arm64.whle344eb79dab01f1e838ebb67aab09965fb271d6da6b00adda26328ac27d4a66e  numpy-2.3.1-cp311-cp311-macosx_14_0_x86_64.whl467db865b392168ceb1ef1ffa6f5a86e62468c43e0cfb4ab6da667ede10e58db  numpy-2.3.1-cp311-cp311-manylinux_2_28_aarch64.whlafed2ce4a84f6b0fc6c1ce734ff368cbf5a5e24e8954a338f3bdffa0718adffb  numpy-2.3.1-cp311-cp311-manylinux_2_28_x86_64.whl0025048b3c1557a20bc80d06fdeb8cc7fc193721484cca82b2cfa072fec71a93  numpy-2.3.1-cp311-cp311-musllinux_1_2_aarch64.whla5ee121b60aa509679b682819c602579e1df14a5b07fe95671c8849aad8f2115  numpy-2.3.1-cp311-cp311-musllinux_1_2_x86_64.whla8b740f5579ae4585831b3cf0e3b0425c667274f82a484866d2adf9570539369  numpy-2.3.1-cp311-cp311-win32.whld4580adadc53311b163444f877e0789f1c8861e2698f6b2a4ca852fda154f3ff  numpy-2.3.1-cp311-cp311-win_amd64.whlec0bdafa906f95adc9a0c6f26a4871fa753f25caaa0e032578a30457bff0af6a  numpy-2.3.1-cp311-cp311-win_arm64.whl2959d8f268f3d8ee402b04a9ec4bb7604555aeacf78b360dc4ec27f1d508177d  numpy-2.3.1-cp312-cp312-macosx_10_13_x86_64.whl762e0c0c6b56bdedfef9a8e1d4538556438288c4276901ea008ae44091954e29  numpy-2.3.1-cp312-cp312-macosx_11_0_arm64.whl867ef172a0976aaa1f1d1b63cf2090de8b636a7674607d514505fb7276ab08fc  numpy-2.3.1-cp312-cp312-macosx_14_0_arm64.whl4e602e1b8682c2b833af89ba641ad4176053aaa50f5cacda1a27004352dde943  numpy-2.3.1-cp312-cp312-macosx_14_0_x86_64.whl8e333040d069eba1652fb08962ec5b76af7f2c7bce1df7e1418c8055cf776f25  numpy-2.3.1-cp312-cp312-manylinux_2_28_aarch64.whle7cbf5a5eafd8d230a3ce356d892512185230e4781a361229bd902ff403bc660  numpy-2.3.1-cp312-cp312-manylinux_2_28_x86_64.whl5f1b8f26d1086835f442286c1d9b64bb3974b0b1e41bb105358fd07d20872952  numpy-2.3.1-cp312-cp312-musllinux_1_2_aarch64.whlee8340cb48c9b7a5899d1149eece41ca535513a9698098edbade2a8e7a84da77  numpy-2.3.1-cp312-cp312-musllinux_1_2_x86_64.whle772dda20a6002ef7061713dc1e2585bc1b534e7909b2030b5a46dae8ff077ab  numpy-2.3.1-cp312-cp312-win32.whlcfecc7822543abdea6de08758091da655ea2210b8ffa1faf116b940693d3df76  numpy-2.3.1-cp312-cp312-win_amd64.whl7be91b2239af2658653c5bb6f1b8bccafaf08226a258caf78ce44710a0160d30  numpy-2.3.1-cp312-cp312-win_arm64.whl25a1992b0a3fdcdaec9f552ef10d8103186f5397ab45e2d25f8ac51b1a6b97e8  numpy-2.3.1-cp313-cp313-macosx_10_13_x86_64.whl7dea630156d39b02a63c18f508f85010230409db5b2927ba59c8ba4ab3e8272e  numpy-2.3.1-cp313-cp313-macosx_11_0_arm64.whlbada6058dd886061f10ea15f230ccf7dfff40572e99fef440a4a857c8728c9c0  numpy-2.3.1-cp313-cp313-macosx_14_0_arm64.whla894f3816eb17b29e4783e5873f92faf55b710c2519e5c351767c51f79d8526d  numpy-2.3.1-cp313-cp313-macosx_14_0_x86_64.whl18703df6c4a4fee55fd3d6e5a253d01c5d33a295409b03fda0c86b3ca2ff41a1  numpy-2.3.1-cp313-cp313-manylinux_2_28_aarch64.whl5902660491bd7a48b2ec16c23ccb9124b8abfd9583c5fdfa123fe6b421e03de1  numpy-2.3.1-cp313-cp313-manylinux_2_28_x86_64.whl36890eb9e9d2081137bd78d29050ba63b8dab95dff7912eadf1185e80074b2a0 ...
Read more
Loading
leo-smi, WLM1ke, wanderingeek, github-actions[bot], Molkree, chfly2000, agriyakhetarpal, bargavigowda, MugundanMCW, Christopher-K-Long, and 2 more reacted with thumbs up emojigithub-actions[bot], agriyakhetarpal, wanderingeek, MugundanMCW, kikocorreoso, cindytsai, and mattyhosseini reacted with hooray emojiagriyakhetarpal, MugundanMCW, and mattyhosseini reacted with heart emojiaaravind100, leo-smi, wanderingeek, github-actions[bot], agriyakhetarpal, MugundanMCW, Lucas-Peterson, hugoesb, and mattyhosseini reacted with rocket emoji
18 people reacted

v2.3.0 (June 7, 2025)

07 Jun 15:08
v2.3.0
This tag was signed with the committer’sverified signature.
charris Charles Harris
GPG key ID:679F228377C5247B
Verified
Learn about vigilant mode.
0532af4
This commit was created on GitHub.com and signed with GitHub’sverified signature.
GPG key ID:B5690EEEBB952194
Verified
Learn about vigilant mode.

Choose a tag to compare

NumPy 2.3.0 Release Notes

The NumPy 2.3.0 release continues the work to improve free threaded
Python support and annotations together with the usual set of bug fixes.
It is unusual in the number of expired deprecations, code
modernizations, and style cleanups. The latter may not be visible to
users, but is important for code maintenance over the long term. Note
that we have also upgraded from manylinux2014 to manylinux_2_28.

Users running on a Mac having an M4 cpu might see various warnings about
invalid values and such. The warnings are a known problem with
Accelerate. They are annoying, but otherwise harmless. Apple promises to
fix them.

This release supports Python versions 3.11-3.13, Python 3.14 will be
supported when it is released.

Highlights

  • Interactive examples in the NumPy documentation.
  • Building NumPy with OpenMP Parallelization.
  • Preliminary support for Windows on ARM.
  • Improved support for free threaded Python.
  • Improved annotations.

New functions

New functionnumpy.strings.slice

The new functionnumpy.strings.slice was added, which implements fast
native slicing of string arrays. It supports the full slicing API
including negative slice offsets and steps.

(gh-27789)

Deprecations

  • Thenumpy.typing.mypy_plugin has been deprecated in favor of
    platform-agnostic static type inference. Please remove
    numpy.typing.mypy_plugin from theplugins section of your mypy
    configuration. If this change results in new errors being reported,
    kindly open an issue.

    (gh-28129)

  • Thenumpy.typing.NBitBase type has been deprecated and will be
    removed in a future version.

    This type was previously intended to be used as a generic upper
    bound for type-parameters, for example:

    importnumpyasnpimportnumpy.typingasnptdeff[NT:npt.NBitBase](x:np.complexfloating[NT])->np.floating[NT]: ...

    But in NumPy 2.2.0,float64 andcomplex128 were changed to
    concrete subtypes, causing static type-checkers to reject
    x: np.float64 = f(np.complex128(42j)).

    So instead, the better approach is to usetyping.overload:

    importnumpyasnpfromtypingimportoverload@overloaddeff(x:np.complex64)->np.float32: ...@overloaddeff(x:np.complex128)->np.float64: ...@overloaddeff(x:np.clongdouble)->np.longdouble: ...

    (gh-28884)

Expired deprecations

  • Remove deprecated macros likeNPY_OWNDATA from Cython interfaces
    in favor ofNPY_ARRAY_OWNDATA (deprecated since 1.7)

    (gh-28254)

  • Removenumpy/npy_1_7_deprecated_api.h and C macros like
    NPY_OWNDATA in favor ofNPY_ARRAY_OWNDATA (deprecated since 1.7)

    (gh-28254)

  • Remove aliasgenerate_divbyzero_error to
    npy_set_floatstatus_divbyzero andgenerate_overflow_error to
    npy_set_floatstatus_overflow (deprecated since 1.10)

    (gh-28254)

  • Removenp.tostring (deprecated since 1.19)

    (gh-28254)

  • Raise onnp.conjugate of non-numeric types (deprecated since 1.13)

    (gh-28254)

  • Raise when usingnp.bincount(...minlength=None), use 0 instead
    (deprecated since 1.14)

    (gh-28254)

  • Passingshape=None to functions with a non-optional shape argument
    errors, use() instead (deprecated since 1.20)

    (gh-28254)

  • Inexact matches formode andsearchside raise (deprecated since
    1.20)

    (gh-28254)

  • Setting__array_finalize__ = None errors (deprecated since 1.23)

    (gh-28254)

  • np.fromfile andnp.fromstring error on bad data, previously they
    would guess (deprecated since 1.18)

    (gh-28254)

  • datetime64 andtimedelta64 construction with a tuple no longer
    accepts anevent value, either use a two-tuple of (unit, num) or a
    4-tuple of (unit, num, den, 1) (deprecated since 1.14)

    (gh-28254)

  • When constructing adtype from a class with adtype attribute,
    that attribute must be a dtype-instance rather than a thing that can
    be parsed as a dtype instance (deprecated in 1.19). At some point
    the whole construct of using a dtype attribute will be deprecated
    (see#25306)

    (gh-28254)

  • Passing booleans as partition index errors (deprecated since 1.23)

    (gh-28254)

  • Out-of-bounds indexes error even on empty arrays (deprecated since
    1.20)

    (gh-28254)

  • np.tostring has been removed, usetobytes instead (deprecated
    since 1.19)

    (gh-28254)

  • Disallow make a non-writeable array writeable for arrays with a base
    that do not own their data (deprecated since 1.17)

    (gh-28254)

  • concatenate() withaxis=None usessame-kind casting by
    default, notunsafe (deprecated since 1.20)

    (gh-28254)

  • Unpickling a scalar with object dtype errors (deprecated since 1.20)

    (gh-28254)

  • The binary mode offromstring now errors, usefrombuffer instead
    (deprecated since 1.14)

    (gh-28254)

  • Convertingnp.inexact ornp.floating to a dtype errors
    (deprecated since 1.19)

    (gh-28254)

  • Convertingnp.complex,np.integer,np.signedinteger,
    np.unsignedinteger,np.generic to a dtype errors (deprecated
    since 1.19)

    (gh-28254)

  • The Python built-inround errors for complex scalars. Use
    np.round orscalar.round instead (deprecated since 1.19)

    (gh-28254)

  • 'np.bool' scalars can no longer be interpreted as an index
    (deprecated since 1.19)

    (gh-28254)

  • Parsing an integer via a float string is no longer supported.
    (deprecated since 1.23) To avoid this error you can

    • make sure the original data is stored as integers.
    • use theconverters=float keyword argument.
    • Usenp.loadtxt(...).astype(np.int64)

    (gh-28254)

  • The use of a length 1 tuple for the ufuncsignature errors. Use
    dtype or fill the tuple withNone (deprecated since 1.19)

    (gh-28254)

  • Special handling of matrix is in np.outer is removed. Convert to a
    ndarray viamatrix.A (deprecated since 1.20)

    (gh-28254)

  • Removed thenp.compat package source code (removed in 2.0)

    (gh-28961)

C API changes

  • NpyIter_GetTransferFlags is now available to check if the iterator
    needs the Python API or if casts may cause floating point errors
    (FPE). FPEs can for example be set when castingfloat64(1e300) to
    float32 (overflow to infinity) or a NaN to an integer (invalid
    value).

    (gh-27883)

  • NpyIter now has no limit on the number of operands it supports.

    (gh-28080)

NewNpyIter_GetTransferFlags andNpyIter_IterationNeedsAPI change

NumPy now has the newNpyIter_GetTransferFlags function as a more
precise way checking of iterator/buffering needs. I.e. whether the
Python API/GIL is required or floating point errors may occur. This
function is also faster if you already know your needs without
buffering.

TheNpyIter_IterationNeedsAPI function now performs all the checks
that were previously performed at setup time. While it was never
necessary to call it multiple times, doing so will now have a larger
cost.

(gh-27998)

New Features

  • The type parameter ofnp.dtype now defaults totyping.Any. This
    way, static type-checkers will inferdtype: np.dtype as
    dtype: np.dtype[Any], without reporting an error.

    (gh-28669)

  • Static type-checkers now interpret:

    • _: np.ndarray as_: npt.NDArray[typing.Any].
    • _: np.flatiter as_: np.flatiter[np.ndarray].

    This is because their type parameters now have default values.

    (gh-28940)

NumPy now registers its pkg-config paths with thepkgconf PyPI package

Thepkgconf PyPI
package provides an interface for projects like NumPy to register their
own paths to be added to the pkg-config search path. This means that
when usingpkgconf
from PyPI, NumPy will be discoverable without needin...

Read more
Loading
Safari77, jack-mcivor, agriyakhetarpal, HinTak, jorenham, kikocorreoso, geyerandreas, wanderingeek, github-actions[bot], Anuvadak, and 9 more reacted with thumbs up emojijorenham, drewpotter, Breeze-Hu, gina886, and Ananya-PKumar reacted with laugh emojiagriyakhetarpal, jorenham, StanFromIreland, r-devulap, wanderingeek, github-actions[bot], drewpotter, Breeze-Hu, AmerM137, Ananya-PKumar, and InessaPawson reacted with hooray emojiagriyakhetarpal, jorenham, drewpotter, bjlittle, Breeze-Hu, and Ananya-PKumar reacted with heart emojiomidfarrokhi, neutrinoceros, ebb-earl-co, agriyakhetarpal, jack-mcivor, geyerandreas, jorenham, r-devulap, wanderingeek, github-actions[bot], and 8 more reacted with rocket emojixyzpw, drewpotter, and Ananya-PKumar reacted with eyes emoji
34 people reacted

v2.3.0rc1 (May 25, 2025)

25 May 15:39
v2.3.0rc1
This tag was signed with the committer’sverified signature.
charris Charles Harris
GPG key ID:679F228377C5247B
Verified
Learn about vigilant mode.
3abd587
This commit was created on GitHub.com and signed with GitHub’sverified signature.
GPG key ID:B5690EEEBB952194
Verified
Learn about vigilant mode.

Choose a tag to compare

Pre-release

NumPy 2.3.0 Release Notes

The NumPy 2.3.0 release continues the work to improve free threaded
Python support and annotations together with the usual set of bug fixes.
It is unusual in the number of expired deprecations and the number of
code modernizations and style cleanups. The latter may not be visible to
users, but is important for code maintenance over the long term. Note
that we have also upgraded from manylinux2014 to manylinux_2_28.

There are known test failures in the rc1 release involving MyPy and
PyPy. The cause of both has been determined and fixes will be applied
before the final release. The current Windows on ARM wheels also lack
OpenBLAS, but they should suffice for initial downstream testing.
OpenBLAS will be incorporated in those wheels when it becomes available.

This release supports Python versions 3.11-3.13, Python 3.14 will be
supported when it is released.

Highlights

  • Interactive examples in the NumPy documentation.
  • Building NumPy with OpenMP Parallelization.
  • Preliminary support for Windows on ARM.
  • Improved support for free threaded Python.
  • Improved annotations.

New functions

New functionnumpy.strings.slice

The new functionnumpy.strings.slice was added, which implements fast
native slicing of string arrays. It supports the full slicing API
including negative slice offsets and steps.

(gh-27789)

Deprecations

  • Thenumpy.typing.mypy_plugin has been deprecated in favor of
    platform-agnostic static type inference. Please remove
    numpy.typing.mypy_plugin from theplugins section of your mypy
    configuration. If this change results in new errors being reported,
    kindly open an issue.

    (gh-28129)

  • Thenumpy.typing.NBitBase type has been deprecated and will be
    removed in a future version.

    This type was previously intended to be used as a generic upper
    bound for type-parameters, for example:

    importnumpyasnpimportnumpy.typingasnptdeff[NT:npt.NBitBase](x:np.complexfloating[NT])->np.floating[NT]: ...

    But in NumPy 2.2.0,float64 andcomplex128 were changed to
    concrete subtypes, causing static type-checkers to reject
    x: np.float64 = f(np.complex128(42j)).

    So instead, the better approach is to usetyping.overload:

    importnumpyasnpfromtypingimportoverload@overloaddeff(x:np.complex64)->np.float32: ...@overloaddeff(x:np.complex128)->np.float64: ...@overloaddeff(x:np.clongdouble)->np.longdouble: ...

    (gh-28884)

Expired deprecations

  • Remove deprecated macros likeNPY_OWNDATA from Cython interfaces
    in favor ofNPY_ARRAY_OWNDATA (deprecated since 1.7)

    (gh-28254)

  • Removenumpy/npy_1_7_deprecated_api.h and C macros like
    NPY_OWNDATA in favor ofNPY_ARRAY_OWNDATA (deprecated since 1.7)

    (gh-28254)

  • Remove aliasgenerate_divbyzero_error to
    npy_set_floatstatus_divbyzero andgenerate_overflow_error to
    npy_set_floatstatus_overflow (deprecated since 1.10)

    (gh-28254)

  • Removenp.tostring (deprecated since 1.19)

    (gh-28254)

  • Raise onnp.conjugate of non-numeric types (deprecated since 1.13)

    (gh-28254)

  • Raise when usingnp.bincount(...minlength=None), use 0 instead
    (deprecated since 1.14)

    (gh-28254)

  • Passingshape=None to functions with a non-optional shape argument
    errors, use() instead (deprecated since 1.20)

    (gh-28254)

  • Inexact matches formode andsearchside raise (deprecated since
    1.20)

    (gh-28254)

  • Setting__array_finalize__ = None errors (deprecated since 1.23)

    (gh-28254)

  • np.fromfile andnp.fromstring error on bad data, previously they
    would guess (deprecated since 1.18)

    (gh-28254)

  • datetime64 andtimedelta64 construction with a tuple no longer
    accepts anevent value, either use a two-tuple of (unit, num) or a
    4-tuple of (unit, num, den, 1) (deprecated since 1.14)

    (gh-28254)

  • When constructing adtype from a class with adtype attribute,
    that attribute must be a dtype-instance rather than a thing that can
    be parsed as a dtype instance (deprecated in 1.19). At some point
    the whole construct of using a dtype attribute will be deprecated
    (see#25306)

    (gh-28254)

  • Passing booleans as partition index errors (deprecated since 1.23)

    (gh-28254)

  • Out-of-bounds indexes error even on empty arrays (deprecated since
    1.20)

    (gh-28254)

  • np.tostring has been removed, usetobytes instead (deprecated
    since 1.19)

    (gh-28254)

  • Disallow make a non-writeable array writeable for arrays with a base
    that do not own their data (deprecated since 1.17)

    (gh-28254)

  • concatenate() withaxis=None usessame-kind casting by
    default, notunsafe (deprecated since 1.20)

    (gh-28254)

  • Unpickling a scalar with object dtype errors (deprecated since 1.20)

    (gh-28254)

  • The binary mode offromstring now errors, usefrombuffer instead
    (deprecated since 1.14)

    (gh-28254)

  • Convertingnp.inexact ornp.floating to a dtype errors
    (deprecated since 1.19)

    (gh-28254)

  • Convertingnp.complex,np.integer,np.signedinteger,
    np.unsignedinteger,np.generic to a dtype errors (deprecated
    since 1.19)

    (gh-28254)

  • The Python built-inround errors for complex scalars. Use
    np.round orscalar.round instead (deprecated since 1.19)

    (gh-28254)

  • 'np.bool' scalars can no longer be interpreted as an index
    (deprecated since 1.19)

    (gh-28254)

  • Parsing an integer via a float string is no longer supported.
    (deprecated since 1.23) To avoid this error you can

    • make sure the original data is stored as integers.
    • use theconverters=float keyword argument.
    • Usenp.loadtxt(...).astype(np.int64)

    (gh-28254)

  • The use of a length 1 tuple for the ufuncsignature errors. Use
    dtype or fill the tuple withNone (deprecated since 1.19)

    (gh-28254)

  • Special handling of matrix is in np.outer is removed. Convert to a
    ndarray viamatrix.A (deprecated since 1.20)

    (gh-28254)

  • Removed thenp.compat package source code (removed in 2.0)

    (gh-28961)

C API changes

  • NpyIter_GetTransferFlags is now available to check if the iterator
    needs the Python API or if casts may cause floating point errors
    (FPE). FPEs can for example be set when castingfloat64(1e300) to
    float32 (overflow to infinity) or a NaN to an integer (invalid
    value).

    (gh-27883)

  • NpyIter now has no limit on the number of operands it supports.

    (gh-28080)

NewNpyIter_GetTransferFlags andNpyIter_IterationNeedsAPI change

NumPy now has the newNpyIter_GetTransferFlags function as a more
precise way checking of iterator/buffering needs. I.e. whether the
Python API/GIL is required or floating point errors may occur. This
function is also faster if you already know your needs without
buffering.

TheNpyIter_IterationNeedsAPI function now performs all the checks
that were previously performed at setup time. While it was never
necessary to call it multiple times, doing so will now have a larger
cost.

(gh-27998)

New Features

  • The type parameter ofnp.dtype now defaults totyping.Any. This
    way, static type-checkers will inferdtype: np.dtype as
    dtype: np.dtype[Any], without reporting an error.

    (gh-28669)

  • Static type-checkers now interpret:

    • _: np.ndarray as_: npt.NDArray[typing.Any].
    • _: np.flatiter as_: np.flatiter[np.ndarray].

    This is because their type parameters now have default values.

    (gh-28940)

NumPy now registers its pkg-config paths with thepkgconf PyPI package

Thepkgconf PyPI
package provides an interface for projects like NumPy to register their
own paths to be added to the pkg-config search path...

Read more
Loading
HinTak, ferraridamiano, aritra025, wanderingeek, agriyakhetarpal, k18a, rino2000, juanjof1, chfly2000, Abobus25, and 4 more reacted with thumbs up emojiagriyakhetarpal, JeanCHDJdev, wanderingeek, and cos4ni2s reacted with hooray emojiagriyakhetarpal, wanderingeek, and cos4ni2s reacted with heart emojijack-mcivor, leo-smi, StanFromIreland, agriyakhetarpal, wanderingeek, cos4ni2s, and ipynb-cell reacted with rocket emoji
18 people reacted

v2.2.6 (May 17, 2025)

17 May 22:45
v2.2.6
This tag was signed with the committer’sverified signature.
charris Charles Harris
GPG key ID:679F228377C5247B
Verified
Learn about vigilant mode.
2b686f6
This commit was created on GitHub.com and signed with GitHub’sverified signature.
GPG key ID:B5690EEEBB952194
Verified
Learn about vigilant mode.

Choose a tag to compare

NumPy 2.2.6 Release Notes

NumPy 2.2.6 is a patch release that fixes bugs found after the 2.2.5
release. It is a mix of typing fixes/improvements as well as the normal
bug fixes and some CI maintenance.

This release supports Python versions 3.10-3.13.

Contributors

A total of 8 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Charles Harris
  • Ilhan Polat
  • Joren Hammudoglu
  • Marco Gorelli +
  • Matti Picus
  • Nathan Goldbaum
  • Peter Hawkins
  • Sayed Adel

Pull requests merged

A total of 11 pull requests were merged for this release.

  • #28778: MAINT: Prepare 2.2.x for further development
  • #28851: BLD: Update vendor-meson to fix module_feature conflicts arguments...
  • #28852: BUG: fix heap buffer overflow in np.strings.find
  • #28853: TYP: fixNDArray[floating] + float return type
  • #28864: BUG: fix stringdtype singleton thread safety
  • #28865: MAINT: use OpenBLAS 0.3.29
  • #28889: MAINT: from_dlpack thread safety fixes
  • #28913: TYP: Fix non-existentCanIndex annotation inndarray.setfield
  • #28915: MAINT: Avoid dereferencing/strict aliasing warnings
  • #28916: BUG: Fix missing check for PyErr_Occurred() in _pyarray_correlate.
  • #28966: TYP: reject complex scalar types in ndarray.__ifloordiv__

Checksums

MD5

259343f056061f6eadb2f4b8999d06d4  numpy-2.2.6-cp310-cp310-macosx_10_9_x86_64.whl16fa85488e149489ce7ee044d7b0d307  numpy-2.2.6-cp310-cp310-macosx_11_0_arm64.whlf01b7aea9d2b76b1eeb49766e615d689  numpy-2.2.6-cp310-cp310-macosx_14_0_arm64.whlf2ddc2b22517f6e31caa1372b12c2499  numpy-2.2.6-cp310-cp310-macosx_14_0_x86_64.whl52190e22869884f0870eb3df7a283ca9  numpy-2.2.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl8f382b9ca6770db600edd5ea2447a925  numpy-2.2.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whle604aae2ef6e01fb92ecc39aca0424d9  numpy-2.2.6-cp310-cp310-musllinux_1_2_aarch64.whl3e5626cf6d8bec95d430a7362e71691c  numpy-2.2.6-cp310-cp310-musllinux_1_2_x86_64.whl8f4f1982837618ed7636ebd432234aeb  numpy-2.2.6-cp310-cp310-win32.whl1cfd2ac5609b4800512f0ce304e19acc  numpy-2.2.6-cp310-cp310-win_amd64.whl116203803ceeaa911dd64810b0305b4c  numpy-2.2.6-cp311-cp311-macosx_10_9_x86_64.whl0427961f3a70ed92b1c4d2c5516c5803  numpy-2.2.6-cp311-cp311-macosx_11_0_arm64.whlfeb8104ed864d51c68984ff93f7255b5  numpy-2.2.6-cp311-cp311-macosx_14_0_arm64.whlf640cd91637f1d474947ecdb18d17ee8  numpy-2.2.6-cp311-cp311-macosx_14_0_x86_64.whl2f87d921a50fe50d04bb62125f8638dd  numpy-2.2.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl7f986c33f49d5940d6d005ff7039e420  numpy-2.2.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl0f7073c78e0aede7179c537f64856db7  numpy-2.2.6-cp311-cp311-musllinux_1_2_aarch64.whl7402bbedcc0b59bd6cef1c483b77dac0  numpy-2.2.6-cp311-cp311-musllinux_1_2_x86_64.whl93c920d40abbc10d5d056b8bfbcdad74  numpy-2.2.6-cp311-cp311-win32.whl9162cb90bff0e4ba322f1e61da9f2fba  numpy-2.2.6-cp311-cp311-win_amd64.whl75e9fa94b0a6ef568b532f6e0773a6a7  numpy-2.2.6-cp312-cp312-macosx_10_13_x86_64.whl79d8f89e82971bb2a2f61d0ef8f1a677  numpy-2.2.6-cp312-cp312-macosx_11_0_arm64.whlfb553e49196bce93af4b0d7e1e8fad1e  numpy-2.2.6-cp312-cp312-macosx_14_0_arm64.whl01a338bc3a5349b5b7db4335fe879810  numpy-2.2.6-cp312-cp312-macosx_14_0_x86_64.whlf37533a7ae4aa95da824b1df2786ac55  numpy-2.2.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl2f9ac35f955d9217b6841568ce13d636  numpy-2.2.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whldf530a075c04dbef9abcac95d027c8bc  numpy-2.2.6-cp312-cp312-musllinux_1_2_aarch64.whl4edf8f80feec739de3e08fffe97195a3  numpy-2.2.6-cp312-cp312-musllinux_1_2_x86_64.whl3e2664254d9a7bb5c66df2b108aaec2f  numpy-2.2.6-cp312-cp312-win32.whlae2e39f1dba9b91d35edcd8736041df8  numpy-2.2.6-cp312-cp312-win_amd64.whl2faa32e27b81105db53fb2fc25a54e0d  numpy-2.2.6-cp313-cp313-macosx_10_13_x86_64.whl0d05b1bb5af5059c8775a4f10fa0ec3d  numpy-2.2.6-cp313-cp313-macosx_11_0_arm64.whlbb404027de8df58312964e26528ef591  numpy-2.2.6-cp313-cp313-macosx_14_0_arm64.whl1340a90e0f62a31691e475214f773196  numpy-2.2.6-cp313-cp313-macosx_14_0_x86_64.whl954981f2846e6735798fb33c1e6fba76  numpy-2.2.6-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl4e4eccd129b31fbef3ced7fb338e862e  numpy-2.2.6-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whlc704c1c56c777bc0fc0d54bbcf9f2ddb  numpy-2.2.6-cp313-cp313-musllinux_1_2_aarch64.whlfb459919a3433235312673bd5797ab8b  numpy-2.2.6-cp313-cp313-musllinux_1_2_x86_64.whl9998e8ae155872c375ce6c020654176b  numpy-2.2.6-cp313-cp313-win32.whl03df8a78963b318b4dfede10b213dce4  numpy-2.2.6-cp313-cp313-win_amd64.whld1982e582eae2fb076942c0bbedcefe4  numpy-2.2.6-cp313-cp313t-macosx_10_13_x86_64.whlcbc7a48b9ca730a8d40927666651430a  numpy-2.2.6-cp313-cp313t-macosx_11_0_arm64.whlcd1d2271c05ccc502b78827b88ff7670  numpy-2.2.6-cp313-cp313t-macosx_14_0_arm64.whlc2b4fb7464e42af240ad51c8be5fb1ba  numpy-2.2.6-cp313-cp313t-macosx_14_0_x86_64.whl6a96c540b8df291a128bb50dfdad0ba4  numpy-2.2.6-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl113d466026e770badd1061a6e1a8ca92  numpy-2.2.6-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl1fce5d26d8d6d021954f717b4bad483c  numpy-2.2.6-cp313-cp313t-musllinux_1_2_aarch64.whld980d6c4b486ad09dbf62ac5cf1b0b2a  numpy-2.2.6-cp313-cp313t-musllinux_1_2_x86_64.whl21571229d4376f3c0458d8eb1be3ba52  numpy-2.2.6-cp313-cp313t-win32.whl4accc0387feec817565aeaba93c79173  numpy-2.2.6-cp313-cp313t-win_amd64.whl774589ee5f842137322ff19b56a35270  numpy-2.2.6-pp310-pypy310_pp73-macosx_10_15_x86_64.whlf934cef42ac65a2094dd5280aa6bf9a2  numpy-2.2.6-pp310-pypy310_pp73-macosx_14_0_x86_64.whl0e53fbb4195726c62b8f237a4bf545e9  numpy-2.2.6-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl3c96c89609022ecd27d44b12c2349a06  numpy-2.2.6-pp310-pypy310_pp73-win_amd64.whl63d66dc1db9d603df0a84c870e703cfc  numpy-2.2.6.tar.gz

SHA256

b412caa66f72040e6d268491a59f2c43bf03eb6c96dd8f0307829feb7fa2b6fb  numpy-2.2.6-cp310-cp310-macosx_10_9_x86_64.whl8e41fd67c52b86603a91c1a505ebaef50b3314de0213461c7a6e99c9a3beff90  numpy-2.2.6-cp310-cp310-macosx_11_0_arm64.whl37e990a01ae6ec7fe7fa1c26c55ecb672dd98b19c3d0e1d1f326fa13cb38d163  numpy-2.2.6-cp310-cp310-macosx_14_0_arm64.whl5a6429d4be8ca66d889b7cf70f536a397dc45ba6faeb5f8c5427935d9592e9cf  numpy-2.2.6-cp310-cp310-macosx_14_0_x86_64.whlefd28d4e9cd7d7a8d39074a4d44c63eda73401580c5c76acda2ce969e0a38e83  numpy-2.2.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whlfc7b73d02efb0e18c000e9ad8b83480dfcd5dfd11065997ed4c6747470ae8915  numpy-2.2.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl74d4531beb257d2c3f4b261bfb0fc09e0f9ebb8842d82a7b4209415896adc680  numpy-2.2.6-cp310-cp310-musllinux_1_2_aarch64.whl8fc377d995680230e83241d8a96def29f204b5782f371c532579b4f20607a289  numpy-2.2.6-cp310-cp310-musllinux_1_2_x86_64.whlb093dd74e50a8cba3e873868d9e93a85b78e0daf2e98c6797566ad8044e8363d  numpy-2.2.6-cp310-cp310-win32.whlf0fd6321b839904e15c46e0d257fdd101dd7f530fe03fd6359c1ea63738703f3  numpy-2.2.6-cp310-cp310-win_amd64.whlf9f1adb22318e121c5c69a09142811a201ef17ab257a1e66ca3025065b7f53ae  numpy-2.2.6-cp311-cp311-macosx_10_9_x86_64.whlc820a93b0255bc360f53eca31a0e676fd1101f673dda8da93454a12e23fc5f7a  numpy-2.2.6-cp311-cp311-macosx_11_0_arm64.whl3d70692235e759f260c3d837193090014aebdf026dfd167834bcba43e30c2a42  numpy-2.2.6-cp311-cp311-macosx_14_0_arm64.whl481b49095335f8eed42e39e8041327c05b0f6f4780488f61286ed3c01368d491  numpy-2.2.6-cp311-cp311-macosx_14_0_x86_64.whlb64d8d4d17135e00c8e346e0a738deb17e754230d7e0810ac5012750bbd85a5a  numpy-2.2.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whlba10f8411898fc418a521833e014a77d3ca01c15b0c6cdcce6a0d2897e6dbbdf  numpy-2.2.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whlbd48227a919f1bafbdda0583705e547892342c26fb127219d60a5c36882609d1  numpy-2.2.6-cp311-cp311-musllinux_1_2_aarch64.whl9551a499bf125c1d4f9e250377c1ee2eddd02e01eac6644c080162c0c51778ab  numpy-2.2.6-cp311-cp311-musllinux_1_2_x86_64.whl0678000bb9ac1475cd454c6b8c799206af8107e310843532b04d49649c717a47  numpy-2.2.6-cp311-cp311-win32.whle8213002e427c69c45a52bbd94163084025f533a55a59d6f9c5b820774ef3303  numpy-2.2.6-cp311-cp311-win_amd64.whl41c5a21f4a04fa86436124d388f6ed60a9343a6f767fced1a8a71c3fbca038ff  numpy-2.2.6-cp312-cp312-macosx_10_13_x86_64.whlde749064336d37e340f640b05f24e9e3dd678c57318c7289d222a8a2f543e90c  numpy-2.2.6-cp312-cp312-macosx_11_0_arm64.whl894b3a42502226a1cac872f840030665f33326fc3dac8e57c607905773cdcde3  numpy-2.2.6-cp312-cp312-macosx_14_0_arm64.whl71594f7c51a18e728451bb50cc60a3ce4e6538822731b2933209a1f3614e9282  numpy-2.2.6-cp312-cp312-macosx_14_0_x86_64.whlf2618db89be1b4e05f7a1a847a9c1c0abd63e63a1607d892dd54668dd92faf87  numpy-2.2.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whlfd83c01228a688733f1ded5201c678f0c53ecc1006ffbc404db9f7a899ac6249  numpy-2.2.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64...
Read more
Loading
BryteLite, Safari77, agriyakhetarpal, MoisesAlvesCostaDev, richiepagard, chfly2000, wanderingeek, etiennelndr, mattyhosseini, Molkree, and cos4ni2s reacted with thumbs up emojikikocorreoso, agriyakhetarpal, ebb-earl-co, wanderingeek, and cos4ni2s reacted with hooray emojiagriyakhetarpal, moomdriver, wanderingeek, and cos4ni2s reacted with heart emojijorenham, aaravind100, agriyakhetarpal, wanderingeek, and cos4ni2s reacted with rocket emoji
16 people reacted

v2.2.5 (Apr 19, 2025)

19 Apr 23:36
v2.2.5
This tag was signed with the committer’sverified signature.
charris Charles Harris
GPG key ID:679F228377C5247B
Verified
Learn about vigilant mode.
7be8c1f
This commit was created on GitHub.com and signed with GitHub’sverified signature.
GPG key ID:B5690EEEBB952194
Verified
Learn about vigilant mode.

Choose a tag to compare

NumPy 2.2.5 Release Notes

NumPy 2.2.5 is a patch release that fixes bugs found after the 2.2.4
release. It has a large number of typing fixes/improvements as well as
the normal bug fixes and some CI maintenance.

This release supports Python versions 3.10-3.13.

Contributors

A total of 7 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Charles Harris
  • Joren Hammudoglu
  • Baskar Gopinath +
  • Nathan Goldbaum
  • Nicholas Christensen +
  • Sayed Adel
  • karl +

Pull requests merged

A total of 19 pull requests were merged for this release.

  • #28545: MAINT: Prepare 2.2.x for further development
  • #28582: BUG: Fix return type of NpyIter_GetIterNext in Cython declarations
  • #28583: BUG: avoid deadlocks with C++ shared mutex in dispatch cache
  • #28585: TYP: fix typing errors in_core.strings
  • #28631: MAINT, CI: Update Ubuntu to 22.04 in azure-pipelines
  • #28632: BUG: Set writeable flag for writeable dlpacks.
  • #28633: BUG: Fix crackfortran parsing error when a division occurs within...
  • #28650: TYP: fixndarray.tolist() and.item() for unknown dtype
  • #28654: BUG: fix deepcopying StringDType arrays (#28643)
  • #28661: TYP: Accept objects thatwrite() tostr insavetxt
  • #28663: CI: Replace QEMU armhf with native (32-bit compatibility mode)
  • #28682: SIMD: Resolve Highway QSort symbol linking error on aarch32/ASIMD
  • #28683: TYP: add missing"b1" literals fordtype[bool]
  • #28705: TYP: Fix false rejection ofNDArray[object_].__abs__()
  • #28706: TYP: Fix inconsistentNDArray[float64].__[r]truediv__ return...
  • #28723: TYP: fix string-likendarray rich comparison operators
  • #28758: TYP: some[arg]partition fixes
  • #28772: TYP: fix incorrectrandom.Generator.integers return type
  • #28774: TYP: fixcount_nonzero signature

Checksums

MD5

3a5d0889d6d7951f44bc6f7a03fa30c6  numpy-2.2.5-cp310-cp310-macosx_10_9_x86_64.whlbcf9f4e768b070e17b2635f422a6e27d  numpy-2.2.5-cp310-cp310-macosx_11_0_arm64.whle82c8fa47a65bb5c2c83295f549dab12  numpy-2.2.5-cp310-cp310-macosx_14_0_arm64.whla5511a995c0f79a8b9a81f2b50e9f692  numpy-2.2.5-cp310-cp310-macosx_14_0_x86_64.whl72bfc1f98238a8e4ba08999e61111e0e  numpy-2.2.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl146c83a5b8099d8d2607392b2ef7fedf  numpy-2.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl6ebdc80b54b008a10575e5d7bbb613f5  numpy-2.2.5-cp310-cp310-musllinux_1_2_aarch64.whl97efde6443da8f9280a5fc2614a087e5  numpy-2.2.5-cp310-cp310-musllinux_1_2_x86_64.whlc143f352206cec535b41b6b1d34c5898  numpy-2.2.5-cp310-cp310-win32.whl0b17fbbf584785f675f1c5b24a00ff93  numpy-2.2.5-cp310-cp310-win_amd64.whl58532622d7eff69a3c71c1ae89dea070  numpy-2.2.5-cp311-cp311-macosx_10_9_x86_64.whl0d002c733bb02debe0b15de5ba872d1e  numpy-2.2.5-cp311-cp311-macosx_11_0_arm64.whlff0c736c60be96506806061ace2251a1  numpy-2.2.5-cp311-cp311-macosx_14_0_arm64.whl4febdec973c4405fd08ef35e0c130de1  numpy-2.2.5-cp311-cp311-macosx_14_0_x86_64.whl0bf4e457c612e565420e135458e70fe0  numpy-2.2.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whla43b608ad15ebdc0960611497205d598  numpy-2.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl7b4b1afd412149a9af7c25d7346fade8  numpy-2.2.5-cp311-cp311-musllinux_1_2_aarch64.whla1e70be013820f92dbfd4796fc4044bb  numpy-2.2.5-cp311-cp311-musllinux_1_2_x86_64.whl73344e05a6fec0b38183363b4a026252  numpy-2.2.5-cp311-cp311-win32.whlb7d5fdd23057c58d15c84eef6bfedb55  numpy-2.2.5-cp311-cp311-win_amd64.whl801b11bb546aac2d92d7b3d5d6c90e86  numpy-2.2.5-cp312-cp312-macosx_10_13_x86_64.whl68dc4298cad9405ad30cfb723be4ae48  numpy-2.2.5-cp312-cp312-macosx_11_0_arm64.whlc31c872e0fa8df5ed7f91882621a925f  numpy-2.2.5-cp312-cp312-macosx_14_0_arm64.whl179dfa545c32c44b77cf8db3b973785f  numpy-2.2.5-cp312-cp312-macosx_14_0_x86_64.whl4562513ff2f1e3f31d66b8e435000141  numpy-2.2.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whlc80a2d8aab1a4d6a66f3fca2f0744744  numpy-2.2.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whle363e0d8c116522d55b0ddd0cbf2de67  numpy-2.2.5-cp312-cp312-musllinux_1_2_aarch64.whld31d443270c76b7238ece2f87b048d21  numpy-2.2.5-cp312-cp312-musllinux_1_2_x86_64.whlbf469fe048fa4ed75a5d8725297e283a  numpy-2.2.5-cp312-cp312-win32.whl069b832aa15b6a815497135e7fa8cae8  numpy-2.2.5-cp312-cp312-win_amd64.whlb2cf059c831cbcfdb4044613a1e5bc8d  numpy-2.2.5-cp313-cp313-macosx_10_13_x86_64.whl70bcb93e55ff0f6602636602e0834607  numpy-2.2.5-cp313-cp313-macosx_11_0_arm64.whl00c4938d67fd5b658ad92ac26fbe9cab  numpy-2.2.5-cp313-cp313-macosx_14_0_arm64.whl0ca38aa51874b9252a2c9d85f81dcd07  numpy-2.2.5-cp313-cp313-macosx_14_0_x86_64.whl6062cf707b8bc07a1600af0991a0a88e  numpy-2.2.5-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl62c1cf7de0327546f3a1e3852de640d3  numpy-2.2.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whlab3ad3390396552f76160139cc528784  numpy-2.2.5-cp313-cp313-musllinux_1_2_aarch64.whld258ba55c9a3936fa0c113cac8bbc0cc  numpy-2.2.5-cp313-cp313-musllinux_1_2_x86_64.whl59bb7e1acb81fc4a02c3b791e110f01e  numpy-2.2.5-cp313-cp313-win32.whl2e5728a9e5c6405d3a22138e4dd7019f  numpy-2.2.5-cp313-cp313-win_amd64.whld315521ec7275d0341787f2450e57e55  numpy-2.2.5-cp313-cp313t-macosx_10_13_x86_64.whl17018c7c259ae81cf2ca4f58523d7d1c  numpy-2.2.5-cp313-cp313t-macosx_11_0_arm64.whlef6fd6a9c6a07db004a272b82f0ea710  numpy-2.2.5-cp313-cp313t-macosx_14_0_arm64.whl07b2baf70b84b44ca6924794d9c7e431  numpy-2.2.5-cp313-cp313t-macosx_14_0_x86_64.whla2fb1ed562d2b6da091d980c7486d113  numpy-2.2.5-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl22fa9137283f463436d7b20a220071cd  numpy-2.2.5-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whlb0ae924e4834155eb5ac159ae611c292  numpy-2.2.5-cp313-cp313t-musllinux_1_2_aarch64.whlc7a8351484f2df9a499c68f1ac73121c  numpy-2.2.5-cp313-cp313t-musllinux_1_2_x86_64.whl1da753e4127a0bdcdfbfa6639568057e  numpy-2.2.5-cp313-cp313t-win32.whla8c869efc0888f214239e5c4f0e6acfb  numpy-2.2.5-cp313-cp313t-win_amd64.whl7255b93f38e7d54a59d6798182f24c6a  numpy-2.2.5-pp310-pypy310_pp73-macosx_10_15_x86_64.whl6743ce025de6c245b03ca8511b306503  numpy-2.2.5-pp310-pypy310_pp73-macosx_14_0_x86_64.whl5abbeec4ff2add1c46f8779f730c73fa  numpy-2.2.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl8e2e01f02d05e111ef2b104d1b3afad1  numpy-2.2.5-pp310-pypy310_pp73-win_amd64.whldf2e46b468f9fdf06b13b04eca9a723f  numpy-2.2.5.tar.gz

SHA256

1f4a922da1729f4c40932b2af4fe84909c7a6e167e6e99f71838ce3a29f3fe26  numpy-2.2.5-cp310-cp310-macosx_10_9_x86_64.whlb6f91524d31b34f4a5fee24f5bc16dcd1491b668798b6d85585d836c1e633a6a  numpy-2.2.5-cp310-cp310-macosx_11_0_arm64.whl19f4718c9012e3baea91a7dba661dcab2451cda2550678dc30d53acb91a7290f  numpy-2.2.5-cp310-cp310-macosx_14_0_arm64.whleb7fd5b184e5d277afa9ec0ad5e4eb562ecff541e7f60e69ee69c8d59e9aeaba  numpy-2.2.5-cp310-cp310-macosx_14_0_x86_64.whl6413d48a9be53e183eb06495d8e3b006ef8f87c324af68241bbe7a39e8ff54c3  numpy-2.2.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl7451f92eddf8503c9b8aa4fe6aa7e87fd51a29c2cfc5f7dbd72efde6c65acf57  numpy-2.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl0bcb1d057b7571334139129b7f941588f69ce7c4ed15a9d6162b2ea54ded700c  numpy-2.2.5-cp310-cp310-musllinux_1_2_aarch64.whl36ab5b23915887543441efd0417e6a3baa08634308894316f446027611b53bf1  numpy-2.2.5-cp310-cp310-musllinux_1_2_x86_64.whl422cc684f17bc963da5f59a31530b3936f57c95a29743056ef7a7903a5dbdf88  numpy-2.2.5-cp310-cp310-win32.whle4f0b035d9d0ed519c813ee23e0a733db81ec37d2e9503afbb6e54ccfdee0fa7  numpy-2.2.5-cp310-cp310-win_amd64.whlc42365005c7a6c42436a54d28c43fe0e01ca11eb2ac3cefe796c25a5f98e5e9b  numpy-2.2.5-cp311-cp311-macosx_10_9_x86_64.whl498815b96f67dc347e03b719ef49c772589fb74b8ee9ea2c37feae915ad6ebda  numpy-2.2.5-cp311-cp311-macosx_11_0_arm64.whl6411f744f7f20081b1b4e7112e0f4c9c5b08f94b9f086e6f0adf3645f85d3a4d  numpy-2.2.5-cp311-cp311-macosx_14_0_arm64.whl9de6832228f617c9ef45d948ec1cd8949c482238d68b2477e6f642c33a7b0a54  numpy-2.2.5-cp311-cp311-macosx_14_0_x86_64.whl369e0d4647c17c9363244f3468f2227d557a74b6781cb62ce57cf3ef5cc7c610  numpy-2.2.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl262d23f383170f99cd9191a7c85b9a50970fe9069b2f8ab5d786eca8a675d60b  numpy-2.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whlaa70fdbdc3b169d69e8c59e65c07a1c9351ceb438e627f0fdcd471015cd956be  numpy-2.2.5-cp311-cp311-musllinux_1_2_aarch64.whl37e32e985f03c06206582a7323ef926b4e78bdaa6915095ef08070471865b906  numpy-2.2.5-cp311-cp311-musllinux_1_2_x86_64.whlf5045039100ed58fa817a6227a356240...
Read more
Loading
jorenham, wanderingeek, chfly2000, Safari77, wx-ys, johannahaffner, SebatinCx, kikocorreoso, rino2000, etiennelndr, and Shafiyullah reacted with thumbs up emojijorenham, wanderingeek, yoshoku, and ebb-earl-co reacted with hooray emojijorenham, wanderingeek, and jennylialiu reacted with heart emojijorenham and wanderingeek reacted with rocket emoji
14 people reacted

2.2.4 (Mar 16, 2025)

16 Mar 18:35
v2.2.4
This tag was signed with the committer’sverified signature.
charris Charles Harris
GPG key ID:679F228377C5247B
Verified
Learn about vigilant mode.
3b37785
This commit was created on GitHub.com and signed with GitHub’sverified signature.
GPG key ID:B5690EEEBB952194
Verified
Learn about vigilant mode.

Choose a tag to compare

NumPy 2.2.4 Release Notes

NumPy 2.2.4 is a patch release that fixes bugs found after the 2.2.3
release. There are a large number of typing improvements, the rest of
the changes are the usual mix of bugfixes and platform maintenace.

This release supports Python versions 3.10-3.13.

Contributors

A total of 15 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Abhishek Kumar
  • Andrej Zhilenkov
  • Andrew Nelson
  • Charles Harris
  • Giovanni Del Monte
  • Guan Ming(Wesley) Chiu +
  • Jonathan Albrecht +
  • Joren Hammudoglu
  • Mark Harfouche
  • Matthieu Darbois
  • Nathan Goldbaum
  • Pieter Eendebak
  • Sebastian Berg
  • Tyler Reddy
  • lvllvl +

Pull requests merged

A total of 17 pull requests were merged for this release.

  • #28333: MAINT: Prepare 2.2.x for further development.
  • #28348: TYP: fix positional- and keyword-only params in astype, cross...
  • #28377: MAINT: Update FreeBSD version and fix test failure
  • #28379: BUG: numpy.loadtxt reads only 50000 lines when skip_rows >= max_rows
  • #28385: BUG: Make np.nonzero threading safe
  • #28420: BUG: safer bincount casting (backport to 2.2.x)
  • #28422: BUG: Fix building on s390x with clang
  • #28423: CI: use QEMU 9.2.2 for Linux Qemu tests
  • #28424: BUG: skip legacy dtype multithreaded test on 32 bit runners
  • #28435: BUG: Fix searchsorted and CheckFromAny byte-swapping logic
  • #28449: BUG: sanity check__array_interface__ number of dimensions
  • #28510: MAINT: Hide decorator from pytest traceback
  • #28512: TYP: Typing fixes backported from#28452,#28491,#28494
  • #28521: TYP: Backport fixes from#28505,#28506,#28508, and#28511
  • #28533: TYP: Backport typing fixes from main (2)
  • #28534: TYP: Backport typing fixes from main (3)
  • #28542: TYP: Backport typing fixes from main (4)

Checksums

MD5

935928cbd2de140da097f6d5f4a01d72  numpy-2.2.4-cp310-cp310-macosx_10_9_x86_64.whlbf7fd01bb177885e920173b610c195d9  numpy-2.2.4-cp310-cp310-macosx_11_0_arm64.whl826e52cd898567a0c446113ab7a7b362  numpy-2.2.4-cp310-cp310-macosx_14_0_arm64.whl9982a91d7327aea541c24aff94d3e462  numpy-2.2.4-cp310-cp310-macosx_14_0_x86_64.whl5bdf5b63f4ee01fa808d13043b2a2275  numpy-2.2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl677b3031105e24eaee2e0e57d7c2a306  numpy-2.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whld857867787fe1eb236670e7fdb25f414  numpy-2.2.4-cp310-cp310-musllinux_1_2_aarch64.whla5aff3a7eb2923878e67fbe1cd04a9e9  numpy-2.2.4-cp310-cp310-musllinux_1_2_x86_64.whle00bd3ac85d8f34b46b7f97a8278aeb3  numpy-2.2.4-cp310-cp310-win32.whle5cb2a5d14bccee316bb73173be125ec  numpy-2.2.4-cp310-cp310-win_amd64.whl494f60d8e1c3500413bd093bb3f486ea  numpy-2.2.4-cp311-cp311-macosx_10_9_x86_64.whla886a9f3e80a60ce6ba95b431578bbca  numpy-2.2.4-cp311-cp311-macosx_11_0_arm64.whl889f3b507bab9272d9b549780840a642  numpy-2.2.4-cp311-cp311-macosx_14_0_arm64.whl059788668d2c4e9aace4858e77c099ed  numpy-2.2.4-cp311-cp311-macosx_14_0_x86_64.whldb9ae978afb76a4bf79df0657a66aaeb  numpy-2.2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whle36963a4c177157dc7b0775c309fa5a8  numpy-2.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl3603e683878b74f38e5617f04ff6a369  numpy-2.2.4-cp311-cp311-musllinux_1_2_aarch64.whlafbc410fb9b42b19f4f7c81c21d6777f  numpy-2.2.4-cp311-cp311-musllinux_1_2_x86_64.whl33ff8081378188894097942f80c33e26  numpy-2.2.4-cp311-cp311-win32.whl5b11fe8d26318d85e0bc577a654f6643  numpy-2.2.4-cp311-cp311-win_amd64.whl91121787f396d3e98210de8b617e5d48  numpy-2.2.4-cp312-cp312-macosx_10_13_x86_64.whlc524d1020b4652aacf4477d1628fa1ba  numpy-2.2.4-cp312-cp312-macosx_11_0_arm64.whleb08f551bdd6772155bb39ac0da47479  numpy-2.2.4-cp312-cp312-macosx_14_0_arm64.whl7cb37fc9145d0ebbea5666b4f9ed1027  numpy-2.2.4-cp312-cp312-macosx_14_0_x86_64.whlc4452a5dc557c291904b5c51a4148237  numpy-2.2.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whlbd23a12ead870759f264160ab38b2c9d  numpy-2.2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl07b44109381985b48d1eef80feebc5ad  numpy-2.2.4-cp312-cp312-musllinux_1_2_aarch64.whl95f1a27d33106fa9f40ee0714681c840  numpy-2.2.4-cp312-cp312-musllinux_1_2_x86_64.whl507e550a55b19dedf267b58a487ba0bc  numpy-2.2.4-cp312-cp312-win32.whlbe21ccbf8931e92ba1fdb2dc1250bf2a  numpy-2.2.4-cp312-cp312-win_amd64.whle94003c2b65d81b00203711c5c42fb8e  numpy-2.2.4-cp313-cp313-macosx_10_13_x86_64.whlcf781fd5412ffd826e0436883452cc17  numpy-2.2.4-cp313-cp313-macosx_11_0_arm64.whl92c9a30386a64f2deddad1db742bd296  numpy-2.2.4-cp313-cp313-macosx_14_0_arm64.whl7fd16554fa0a15b7f99b1fabf1c4592c  numpy-2.2.4-cp313-cp313-macosx_14_0_x86_64.whl9293b0575a902b2d55c35567dee7679e  numpy-2.2.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl9970699bd95e8a64a562b1e6328b83d0  numpy-2.2.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whle8597c611a919a8e88229d6889c1f86e  numpy-2.2.4-cp313-cp313-musllinux_1_2_aarch64.whl329288501f012606605bdbed368e58e9  numpy-2.2.4-cp313-cp313-musllinux_1_2_x86_64.whl04bf8d0f6a9e279ab01df4ed0b4aeee1  numpy-2.2.4-cp313-cp313-win32.whl66801fe84a436b7ed3be6e0082b86917  numpy-2.2.4-cp313-cp313-win_amd64.whl3e2f31e01b45cd16a87b794477de3714  numpy-2.2.4-cp313-cp313t-macosx_10_13_x86_64.whl7504018213a3a8fea7173e2c1d0fcfd1  numpy-2.2.4-cp313-cp313t-macosx_11_0_arm64.whle299021397c3cdb941b7ffe77cf0fefe  numpy-2.2.4-cp313-cp313t-macosx_14_0_arm64.whl1cc2731a246079bcab361179f38e7ccb  numpy-2.2.4-cp313-cp313t-macosx_14_0_x86_64.whle6eccf936d25c9eda9df1a4d50ae2fdc  numpy-2.2.4-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whlba825efd05cca6d56c3dca9f7f1f88e7  numpy-2.2.4-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl369eebec47c9c27cb4841a13e9522167  numpy-2.2.4-cp313-cp313t-musllinux_1_2_aarch64.whl554dbfa52988d01f715cbe8d4da4b409  numpy-2.2.4-cp313-cp313t-musllinux_1_2_x86_64.whl811d25a008c68086c9382487e9a4127a  numpy-2.2.4-cp313-cp313t-win32.whl893fd2fdd42f386e300bee885bbb7778  numpy-2.2.4-cp313-cp313t-win_amd64.whl65e284546c5ee575eca0a3726c0a1d98  numpy-2.2.4-pp310-pypy310_pp73-macosx_10_15_x86_64.whle4e73511eac8f1a10c6abbd6fa2fa0aa  numpy-2.2.4-pp310-pypy310_pp73-macosx_14_0_x86_64.whla884ed5263b91fa87b5e3d14caf955a5  numpy-2.2.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl7330087a6ad1527ae20a495e2fb3b357  numpy-2.2.4-pp310-pypy310_pp73-win_amd64.whl56232f4a69b03dd7a87a55fffc5f2ebc  numpy-2.2.4.tar.gz

SHA256

8146f3550d627252269ac42ae660281d673eb6f8b32f113538e0cc2a9aed42b9  numpy-2.2.4-cp310-cp310-macosx_10_9_x86_64.whle642d86b8f956098b564a45e6f6ce68a22c2c97a04f5acd3f221f57b8cb850ae  numpy-2.2.4-cp310-cp310-macosx_11_0_arm64.whla84eda42bd12edc36eb5b53bbcc9b406820d3353f1994b6cfe453a33ff101775  numpy-2.2.4-cp310-cp310-macosx_14_0_arm64.whl4ba5054787e89c59c593a4169830ab362ac2bee8a969249dc56e5d7d20ff8df9  numpy-2.2.4-cp310-cp310-macosx_14_0_x86_64.whl7716e4a9b7af82c06a2543c53ca476fa0b57e4d760481273e09da04b74ee6ee2  numpy-2.2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whladf8c1d66f432ce577d0197dceaac2ac00c0759f573f28516246351c58a85020  numpy-2.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl218f061d2faa73621fa23d6359442b0fc658d5b9a70801373625d958259eaca3  numpy-2.2.4-cp310-cp310-musllinux_1_2_aarch64.whldf2f57871a96bbc1b69733cd4c51dc33bea66146b8c63cacbfed73eec0883017  numpy-2.2.4-cp310-cp310-musllinux_1_2_x86_64.whla0258ad1f44f138b791327961caedffbf9612bfa504ab9597157806faa95194a  numpy-2.2.4-cp310-cp310-win32.whl0d54974f9cf14acf49c60f0f7f4084b6579d24d439453d5fc5805d46a165b542  numpy-2.2.4-cp310-cp310-win_amd64.whle9e0a277bb2eb5d8a7407e14688b85fd8ad628ee4e0c7930415687b6564207a4  numpy-2.2.4-cp311-cp311-macosx_10_9_x86_64.whl9eeea959168ea555e556b8188da5fa7831e21d91ce031e95ce23747b7609f8a4  numpy-2.2.4-cp311-cp311-macosx_11_0_arm64.whlbd3ad3b0a40e713fc68f99ecfd07124195333f1e689387c180813f0e94309d6f  numpy-2.2.4-cp311-cp311-macosx_14_0_arm64.whlcf28633d64294969c019c6df4ff37f5698e8326db68cc2b66576a51fad634880  numpy-2.2.4-cp311-cp311-macosx_14_0_x86_64.whl2fa8fa7697ad1646b5c93de1719965844e004fcad23c91228aca1cf0800044a1  numpy-2.2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whlf4162988a360a29af158aeb4a2f4f09ffed6a969c9776f8f3bdee9b06a8ab7e5  numpy-2.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl892c10d6a73e0f14935c31229e03325a7b3093fafd6ce0af704be7f894d95687  numpy-2.2.4-cp311-cp311-musllinux_1_2_aarch64.whldb1f1c22173ac1c58db249ae48aa7ead29f534b9a948bc56828337aa84a32ed6  numpy-2.2.4-cp311-cp311-musllinux_1_2_x86_64.whlea2bb7e2ae9e37d96835b3576a4fa4b3a97592fbea8ef7c3587078b0068b8f09  numpy-2.2.4-cp311-cp311-win32.whlf7de08cbe5551911886d1ab60de...
Read more
Loading
agriyakhetarpal, jorenham, gwisk, Safari77, wanderingeek, rino2000, Bluerrror, yoshoku, chfly2000, rayptor, and 5 more reacted with thumbs up emojijorenham, IsaacCheng9, and wanderingeek reacted with laugh emojiagriyakhetarpal, jorenham, wanderingeek, and Abinashbunty reacted with hooray emojiagriyakhetarpal, jorenham, gwisk, dillon-broaders, and wanderingeek reacted with heart emojiagriyakhetarpal, jorenham, SebatinCx, ebb-earl-co, and wanderingeek reacted with rocket emoji
20 people reacted
Previous13451314
Previous

[8]ページ先頭

©2009-2025 Movatter.jp