Uh oh!
There was an error while loading.Please reload this page.
- Notifications
You must be signed in to change notification settings - Fork11.8k
Releases: numpy/numpy
2.3.5 (Nov 16, 2025)
c3d60fcNumPy 2.3.5 Release Notes
The NumPy 2.3.5 release is a patch release split between a number of maintenance
updates and bug fixes. This release supports Python versions 3.11-3.14.
Contributors
A total of 10 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.
- Aaron Kollasch +
- Charles Harris
- Joren Hammudoglu
- Matti Picus
- Nathan Goldbaum
- Rafael Laboissière +
- Sayed Awad
- Sebastian Berg
- Warren Weckesser
- Yasir Ashfaq +
Pull requests merged
A total of 16 pull requests were merged for this release.
- #29979: MAINT: Prepare 2.3.x for further development
- #30026: SIMD, BLD: Backport FPMATH mode on x86-32 and filter successor...
- #30029: MAINT: Backport write_release.py
- #30041: TYP: Various typing updates
- #30059: BUG: Fix np.strings.slice if stop=None or start and stop >= len...
- #30063: BUG: Fix np.strings.slice if start > stop
- #30076: BUG: avoid negating INT_MIN in PyArray_Round implementation (#30071)
- #30090: BUG: Fix resize when it contains references (#29970)
- #30129: BLD: update scipy-openblas, use -Dpkg_config_path (#30049)
- #30130: BUG: Avoid compilation error of wrapper file generated with SWIG...
- #30157: BLD: use scipy-openblas 0.3.30.7 (#30132)
- #30158: DOC: Remove nonexistent
orderparameter docs ofma.asanyarray... - #30185: BUG: Fix check of PyMem_Calloc return value. (#30176)
- #30217: DOC: fix links for newly rebuilt numpy-tutorials site
- #30218: BUG: Fix build on s390x with clang (#30214)
- #30237: ENH: Make FPE blas check a runtime check for all apple arm systems
Assets6
Uh oh!
There was an error while loading.Please reload this page.
v2.3.4 (Oct 15, 2025)
1458b9eNumPy 2.3.4 Release Notes
The NumPy 2.3.4 release is a patch release split between a number of maintenance
updates and bug fixes. This release supports Python versions 3.11-3.14. This
release is based on Python 3.14.0 final.
Changes
Thenpymath andnpyrandom libraries now have a.lib rather than a.a file extension on win-arm64, for compatibility for building with MSVC andsetuptools. Please note that using these static libraries is discouraged
and for existing projects using it, it's best to use it with a matching
compiler toolchain, which isclang-cl on Windows on Arm.
(gh-29750)
Contributors
A total of 17 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.
- !DWesl
- Charles Harris
- Christian Barbia +
- Evgeni Burovski
- Joren Hammudoglu
- Maaz +
- Mateusz Sokół
- Matti Picus
- Nathan Goldbaum
- Ralf Gommers
- Riku Sakamoto +
- Sandeep Gupta +
- Sayed Awad
- Sebastian Berg
- Sergey Fedorov +
- Warren Weckesser
- dependabot[bot]
Pull requests merged
A total of 30 pull requests were merged for this release.
- #29725: MAINT: Prepare 2.3.x for further development
- #29781: MAINT: Pin some upstream dependences
- #29782: BLD: enable x86-simd-sort to build on KNL with -mavx512f
- #29783: BUG: Include python-including headers first (#29281)
- #29784: TYP: fix np.number and np.*integer method declaration
- #29785: TYP: mypy 1.18.1
- #29788: TYP: replace scalar type __init__ with __new__
- #29790: BUG: Fix
dtyperefcount in__array__(#29715) - #29791: TYP: fix method declarations in floating, timedelta64, and datetime64Backport
- #29792: MAINT: delete unused variables in unary logical dispatch
- #29797: BUG: Fix pocketfft umath strides for AIX compatibility (#29768)
- #29798: BUG: np.setbufsize should raise ValueError for negative input
- #29799: BUG: Fix assert in nditer buffer setup
- #29800: BUG: Stable ScalarType ordering
- #29838: TST: Pin pyparsing to avoid matplotlib errors.
- #29839: BUG: linalg: emit a MemoryError on a malloc failure (#29811)
- #29840: BLD: change file extension for libnpymath on win-arm64 from .a...
- #29864: CI: Fix loongarch64 CI (#29856)
- #29865: TYP: Various typing fixes
- #29910: BUG: Fix float16-sort failures on 32-bit x86 MSVC (#29908)
- #29911: TYP: add missing
__slots__(#29901) - #29913: TYP: wrong argument defaults in
testing._private(#29902) - #29920: BUG: avoid segmentation fault in string_expandtabs_length_promoter
- #29921: BUG: Fix INT_MIN % -1 to return 0 for all signed integer types...
- #29922: TYP: minor fixes related to
errstate(#29914) - #29923: TST: use requirements/test_requirements across CI (#29919)
- #29926: BUG: fix negative samples generated by Wald distribution (#29609)
- #29940: MAINT: Bump pypa/cibuildwheel from 3.1.4 to 3.2.1
- #29949: STY: rename
@classmethodarg to cls - #29950: MAINT: Simplify string arena growth strategy (#29885)
Assets6
Uh oh!
There was an error while loading.Please reload this page.
2.3.3 (Sep 9, 2025)
f2a77a7NumPy 2.3.3 Release Notes
The NumPy 2.3.3 release is a patch release split between a number of maintenance
updates and bug fixes. This release supports Python versions 3.11-3.14. Note
that the 3.14.0 final is currently expected in Oct, 2025. This release is based
on 3.14.0rc2.
Contributors
A total of 13 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.
- Aleksandr A. Voyt +
- Bernard Roesler +
- Charles Harris
- Hunter Hogan +
- Joren Hammudoglu
- Maanas Arora
- Matti Picus
- Nathan Goldbaum
- Raghuveer Devulapalli
- Sanjay Kumar Sakamuri Kamalakar +
- Tobias Markus +
- Warren Weckesser
- Zebreus +
Pull requests merged
A total of 23 pull requests were merged for this release.
- #29440: MAINT: Prepare 2.3.x for further development.
- #29446: BUG: Fix test_configtool_pkgconfigdir to resolve PKG_CONFIG_DIR...
- #29447: BLD: allow targeting webassembly without emscripten
- #29460: MAINT: Backport write_release.py
- #29473: MAINT: Bump pypa/cibuildwheel from 3.1.0 to 3.1.2
- #29500: BUG: Always return a real dtype from linalg.cond (gh-18304) (#29333)
- #29501: MAINT: Add .file entry to all .s SVML files
- #29556: BUG: Casting from one timedelta64 to another didn't handle NAT.
- #29562: BLD: update vendored Meson to 1.8.3 [wheel build]
- #29563: BUG: Fix metadata not roundtripping when pickling datetime (#29555)
- #29587: TST: update link and version for Intel SDE download
- #29593: TYP: add
sortedkwarg tounique - #29672: MAINT: Update pythoncapi-compat from main.
- #29673: MAINT: Update cibuildwheel.
- #29674: MAINT: Fix typo in wheels.yml
- #29683: BUG, BLD: Correct regex for ppc64 VSX3/VSX4 feature detection
- #29684: TYP: ndarray.fill() takes no keyword arguments
- #29685: BUG: avoid thread-unsafe refcount check in temp elision
- #29687: CI: replace comment-hider action in mypy_primer workflow
- #29689: BLD: Add missing <unordered_map> include
- #29691: BUG: use correct input dtype in flatiter assignment
- #29700: TYP: fix np.bool method declarations
- #29701: BUG: Correct ambiguous logic for s390x CPU feature detection
Assets5
Uh oh!
There was an error while loading.Please reload this page.
v2.3.2 (Jul 24, 2025)
bc5e4f8NumPy 2.3.2 Release Notes
The NumPy 2.3.2 release is a patch release with a number of bug fixes
and maintenance updates. The highlights are:
- Wheels for Python 3.14.0rc1
- PyPy updated to the latest stable release
- OpenBLAS updated to 0.3.30
This release supports Python versions 3.11-3.14
Contributors
A total of 9 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.
- !DWesl
- Charles Harris
- Joren Hammudoglu
- Maanas Arora
- Marco Edward Gorelli
- Matti Picus
- Nathan Goldbaum
- Sebastian Berg
- kostayScr +
Pull requests merged
A total of 16 pull requests were merged for this release.
- #29256: MAINT: Prepare 2.3.x for further development
- #29283: TYP: Work around a mypy issue with bool arrays (#29248)
- #29284: BUG: fix fencepost error in StringDType internals
- #29287: BUG: handle case in mapiter where descriptors might get replaced...
- #29350: BUG: Fix shape error path in array-interface
- #29412: BUG: Allow reading non-npy files in npz and add test
- #29413: TST: Avoid uninitialized values in test (#29341)
- #29414: BUG: Fix reference leakage for output arrays in reduction functions
- #29415: BUG: fix casting issue in center, ljust, rjust, and zfill (#29369)
- #29416: TYP: Fix overloads in
np.char.arrayandnp.char.asarray... - #29417: BUG: Any dtype should call
squareonarr \*\* 2(#29392) - #29424: MAINT: use a stable pypy release in CI
- #29425: MAINT: Support python 314rc1
- #29429: MAINT: Update highway to match main.
- #29430: BLD: use github to build macos-arm64 wheels with OpenBLAS and...
- #29437: BUG: fix datetime/timedelta hash memory leak (#29411)
Checksums
MD5
e35c637ea9fba77eabfdf70e26eaa16d numpy-2.3.2-cp311-cp311-macosx_10_9_x86_64.whl3dede42d11c843cfacff422f65a80e47 numpy-2.3.2-cp311-cp311-macosx_11_0_arm64.whlf5c485a43210eb3541b254c8c9d6ac9e numpy-2.3.2-cp311-cp311-macosx_14_0_arm64.whl658950eb37e19b42920635ee60830a1d numpy-2.3.2-cp311-cp311-macosx_14_0_x86_64.whl9a864a280798829cc522521bc5d9c7e2 numpy-2.3.2-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl085e1ff7746d327a1320672ab86966c3 numpy-2.3.2-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl6acefa06c38bc616352b76174d4f19d2 numpy-2.3.2-cp311-cp311-musllinux_1_2_aarch64.whl4dd3469970dbfba60dad41b9923c5a5a numpy-2.3.2-cp311-cp311-musllinux_1_2_x86_64.whlad090139b8b872a9157b92c840566c5e numpy-2.3.2-cp311-cp311-win32.whl09b023f808432e60633e36a13630dc13 numpy-2.3.2-cp311-cp311-win_amd64.whlc80f2a1c4c829ccb6745a6d0803b7177 numpy-2.3.2-cp311-cp311-win_arm64.whl307fc28e0c630dbc5a6ff4051ee9ec6c numpy-2.3.2-cp312-cp312-macosx_10_13_x86_64.whl4af1ffb81bdec235aef1b9bdf7c1566d numpy-2.3.2-cp312-cp312-macosx_11_0_arm64.whl8003e8df1badaffee163a603bf05656b numpy-2.3.2-cp312-cp312-macosx_14_0_arm64.whle703fab1c371fd27389401caa34a5cbd numpy-2.3.2-cp312-cp312-macosx_14_0_x86_64.whl5fdc228f15ec5de78b89c7aa4c137019 numpy-2.3.2-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whlf3bc10b89911c09777c4c5d9752f35b0 numpy-2.3.2-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl5d0128aa0f6aa3a5122364a727a72eba numpy-2.3.2-cp312-cp312-musllinux_1_2_aarch64.whlef392070c44709321d7f87ab15bbd674 numpy-2.3.2-cp312-cp312-musllinux_1_2_x86_64.whl909e05dcd1164cc02d5fccc1cc6c9ca6 numpy-2.3.2-cp312-cp312-win32.whl3ba0b657682fc54d9433b4d7244c9264 numpy-2.3.2-cp312-cp312-win_amd64.whl05755e8c591b1ac2fff05a06d76ac414 numpy-2.3.2-cp312-cp312-win_arm64.whlc1e323fa1986bc99ae96c46126a30f93 numpy-2.3.2-cp313-cp313-macosx_10_13_x86_64.whl9a89327ef3550581017ea6e2a47c1a8e numpy-2.3.2-cp313-cp313-macosx_11_0_arm64.whl3c7236116911c5c19de0091d7ac81f65 numpy-2.3.2-cp313-cp313-macosx_14_0_arm64.whl1809c7adafae6492741864cf4dda7d1e numpy-2.3.2-cp313-cp313-macosx_14_0_x86_64.whlee68f94ec5f9c0c7f9423d7329bc085e numpy-2.3.2-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl24c4e95f0a615356787e2920378e5c6f numpy-2.3.2-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl5c53a2c915d177b7c305c0386ba21b43 numpy-2.3.2-cp313-cp313-musllinux_1_2_aarch64.whlc4607ea441320a0078d942ca21ef2411 numpy-2.3.2-cp313-cp313-musllinux_1_2_x86_64.whl09f2fdeb35d952751ba269ca5fa77e7a numpy-2.3.2-cp313-cp313-win32.whl47a7326544ce192df844b3e9750c7704 numpy-2.3.2-cp313-cp313-win_amd64.whl9b5adab8ee4eb97ccf90d73d63671db4 numpy-2.3.2-cp313-cp313-win_arm64.whl7169baf4160b9a75790650cef23a73e1 numpy-2.3.2-cp313-cp313t-macosx_10_13_x86_64.whl0338f2a78981d84d84e5f693ed6112d5 numpy-2.3.2-cp313-cp313t-macosx_11_0_arm64.whlb0c1c28add9716f7cee433d53fb43067 numpy-2.3.2-cp313-cp313t-macosx_14_0_arm64.whld2d8d43c535184095550420169858b90 numpy-2.3.2-cp313-cp313t-macosx_14_0_x86_64.whl745bb6930958f4d7980cd705621abc25 numpy-2.3.2-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl96412f8c9687d468e260aacdfb9cca02 numpy-2.3.2-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl11ce971fe997bf5c0784516db85891ff numpy-2.3.2-cp313-cp313t-musllinux_1_2_aarch64.whle71ba272e9db74bc753ca056e76fdf5b numpy-2.3.2-cp313-cp313t-musllinux_1_2_x86_64.whl82feb6822f2cf04a9edf38cf7f7d4806 numpy-2.3.2-cp313-cp313t-win32.whlc6c8a1a2e94a9fc2dad9d161a6666e54 numpy-2.3.2-cp313-cp313t-win_amd64.whl29e65f132c4a916214a0e82bca214717 numpy-2.3.2-cp313-cp313t-win_arm64.whl2b99d343001495b182027843bf2148b2 numpy-2.3.2-cp314-cp314-macosx_10_13_x86_64.whl40d04ac18cd9db3c380224d3d5607770 numpy-2.3.2-cp314-cp314-macosx_11_0_arm64.whl871631874c6839719d1c1b3ad81835cd numpy-2.3.2-cp314-cp314-macosx_14_0_arm64.whl4d4098888f19de85dd18646c2f955cd2 numpy-2.3.2-cp314-cp314-macosx_14_0_x86_64.whl813e47e3c07cd28bf0458a1e513d6619 numpy-2.3.2-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl1fe080566baca813e6ac4635011a408a numpy-2.3.2-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whlbd44ab38b53a4b5b6130b6f01ffaf5fa numpy-2.3.2-cp314-cp314-musllinux_1_2_aarch64.whlf2fda217bec39ede344b42fef2cbd9e5 numpy-2.3.2-cp314-cp314-musllinux_1_2_x86_64.whlc02218de0d0666769c91513eafaf251f numpy-2.3.2-cp314-cp314-win32.whld419eb806a6f5debb366d4bcf0f5bde0 numpy-2.3.2-cp314-cp314-win_amd64.whl851529ffdf2b0d4b66eb1ac99c24da3e numpy-2.3.2-cp314-cp314-win_arm64.whl2306e8b73fcd2d46116c6a95034e4d3a numpy-2.3.2-cp314-cp314t-macosx_10_13_x86_64.whlb4d4ce3339cb9f0b0f2b339db803f39c numpy-2.3.2-cp314-cp314t-macosx_11_0_arm64.whl6ae336ac461d5d89811c8a236b442842 numpy-2.3.2-cp314-cp314t-macosx_14_0_arm64.whl351f35dd00bfb35e6cad2447a14c7cdf numpy-2.3.2-cp314-cp314t-macosx_14_0_x86_64.whl0e0b26b34024f24a5f59809a1778ace0 numpy-2.3.2-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whlbc77a7f5826bb0a38154d31d8444abb7 numpy-2.3.2-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whlcd1e335e2a8437339475db12ee30f26d numpy-2.3.2-cp314-cp314t-musllinux_1_2_aarch64.whl5c8093e713bd7e5f8512458d53fefeed numpy-2.3.2-cp314-cp314t-musllinux_1_2_x86_64.whl66125a7e4e311fc2dedfa8c25ee577f2 numpy-2.3.2-cp314-cp314t-win32.whl97713f41a5d4a08e8ed3d629d07678d3 numpy-2.3.2-cp314-cp314t-win_amd64.whl848c4c409b643c2b42c431f51b310095 numpy-2.3.2-cp314-cp314t-win_arm64.whle240eed2fc098f7a0ae9813abead8a05 numpy-2.3.2-pp311-pypy311_pp73-macosx_10_15_x86_64.whl7e46ebe46530596019ae6b5db8a7a564 numpy-2.3.2-pp311-pypy311_pp73-macosx_11_0_arm64.whl82077182e608a0d366eba700902463b5 numpy-2.3.2-pp311-pypy311_pp73-macosx_14_0_arm64.whl67db17064907cd22a74676b50de1ab6d numpy-2.3.2-pp311-pypy311_pp73-macosx_14_0_x86_64.whl6d59903ecd732d53dd230ca59cdc2c34 numpy-2.3.2-pp311-pypy311_pp73-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whlbaae8d6875e1de409ffef875896c4b4f numpy-2.3.2-pp311-pypy311_pp73-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl5d92d6c39f2f0b28149ed15437b13cf7 numpy-2.3.2-pp311-pypy311_pp73-win_amd64.whlf8d3d3b3ecd2b6e98889e88f6bbdc1a3 numpy-2.3.2.tar.gzSHA256
852ae5bed3478b92f093e30f785c98e0cb62fa0a939ed057c31716e18a7a22b9 numpy-2.3.2-cp311-cp311-macosx_10_9_x86_64.whl7a0e27186e781a69959d0230dd9909b5e26024f8da10683bd6344baea1885168 numpy-2.3.2-cp311-cp311-macosx_11_0_arm64.whlf0a1a8476ad77a228e41619af2fa9505cf69df928e9aaa165746584ea17fed2b numpy-2.3.2-cp311-cp311-macosx_14_0_arm64.whlcbc95b3813920145032412f7e33d12080f11dc776262df1712e1638207dde9e8 numpy-2.3.2-cp311-cp311-macosx_14_0_x86_64.whlf75018be4980a7324edc5930fe39aa391d5734531b1926968605416ff58c332d numpy-2.3.2-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl20b8200721840f5621b7bd03f8dcd78de33ec522fc40dc2641aa09537df010c3 numpy-2.3.2-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl1f91e5c028504660d606340a084db4b216567ded1056ea2b4be4f9d10b67197f numpy-2.3.2-cp311-cp3...Assets5
Uh oh!
There was an error while loading.Please reload this page.
v2.3.1 (Jun 21, 2025)
4d833e5NumPy 2.3.1 Release Notes
The NumPy 2.3.1 release is a patch release with several bug fixes,
annotation improvements, and better support for OpenBSD. Highlights are:
- Fix bug in
matmulfor non-contiguous out kwarg parameter - Fix for Accelerate runtime warnings on M4 hardware
- Fix new in NumPy 2.3.0
np.vectorizecasting errors - Improved support of cpu features for FreeBSD and OpenBSD
This release supports Python versions 3.11-3.13, Python 3.14 will be
supported when it is released.
Contributors
A total of 9 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.
- Brad Smith +
- Charles Harris
- Developer-Ecosystem-Engineering
- François Rozet
- Joren Hammudoglu
- Matti Picus
- Mugundan Selvanayagam
- Nathan Goldbaum
- Sebastian Berg
Pull requests merged
A total of 12 pull requests were merged for this release.
- #29140: MAINT: Prepare 2.3.x for further development
- #29191: BUG: fix matmul with transposed out arg (#29179)
- #29192: TYP: Backport typing fixes and improvements.
- #29205: BUG: Revert
np.vectorizecasting to legacy behavior (#29196) - #29222: TYP: Backport typing fixes
- #29233: BUG: avoid negating unsigned integers in resize implementation...
- #29234: TST: Fix test that uses uninitialized memory (#29232)
- #29235: BUG: Address interaction between SME and FPSR (#29223)
- #29237: BUG: Enforce integer limitation in concatenate (#29231)
- #29238: CI: Add support for building NumPy with LLVM for Win-ARM64
- #29241: ENH: Detect CPU features on OpenBSD ARM and PowerPC64
- #29242: ENH: Detect CPU features on FreeBSD / OpenBSD RISC-V64.
Checksums
MD5
c353ac75ea083594a6cb674b5f943d83 numpy-2.3.1-cp311-cp311-macosx_10_9_x86_64.whlfdb5454e372d399cf570868ea7e2b192 numpy-2.3.1-cp311-cp311-macosx_11_0_arm64.whldc0f17823bb1826519d6974c2b95fa90 numpy-2.3.1-cp311-cp311-macosx_14_0_arm64.whl7e3118fe383af697a8868ba191b9eac0 numpy-2.3.1-cp311-cp311-macosx_14_0_x86_64.whl705aafad1250aa3e41502c5710a26ed5 numpy-2.3.1-cp311-cp311-manylinux_2_28_aarch64.whl003d6268344577b804205098e11cdaa0 numpy-2.3.1-cp311-cp311-manylinux_2_28_x86_64.whl7d0c0fd11c573c510a25dd7513e4ae0a numpy-2.3.1-cp311-cp311-musllinux_1_2_aarch64.whld99f993ef05966ead99df736df18b521 numpy-2.3.1-cp311-cp311-musllinux_1_2_x86_64.whl96933cac225fb8b60a9cc2c0efa14d36 numpy-2.3.1-cp311-cp311-win32.whlf777712419f3dd586ac294ddce84b274 numpy-2.3.1-cp311-cp311-win_amd64.whl1fe2615669de5c271a48b99356fa3528 numpy-2.3.1-cp311-cp311-win_arm64.whlfccca48846d41d38966cc75395787f79 numpy-2.3.1-cp312-cp312-macosx_10_13_x86_64.whlfa389e78db43f3c2841ce127c1205422 numpy-2.3.1-cp312-cp312-macosx_11_0_arm64.whl2554944d786abd284db4a699d4edfe1e numpy-2.3.1-cp312-cp312-macosx_14_0_arm64.whl7fec491834803a8ffa3765ef3d03cea5 numpy-2.3.1-cp312-cp312-macosx_14_0_x86_64.whl7c2d8b4412f12b9b02e98349fb5cd760 numpy-2.3.1-cp312-cp312-manylinux_2_28_aarch64.whl94dcc636a2f2478666d820e21fc91682 numpy-2.3.1-cp312-cp312-manylinux_2_28_x86_64.whl404128939d89d1ea26be105fb03b5028 numpy-2.3.1-cp312-cp312-musllinux_1_2_aarch64.whle89d8d460060e8315c3ba68b2b649db0 numpy-2.3.1-cp312-cp312-musllinux_1_2_x86_64.whla767bd10267ad6baef9655fb08db3fd3 numpy-2.3.1-cp312-cp312-win32.whlf753b957fcb7f06f043cf9c6114f294c numpy-2.3.1-cp312-cp312-win_amd64.whl58ffa7c69587f9bf8f6025794fec7f63 numpy-2.3.1-cp312-cp312-win_arm64.whl22a2a9a568dd0866b288ad8bd8bb3e90 numpy-2.3.1-cp313-cp313-macosx_10_13_x86_64.whl5e1593fcc8bb3447e995622f2dca017b numpy-2.3.1-cp313-cp313-macosx_11_0_arm64.whl894d56072db9358e0096538710a1a8ce numpy-2.3.1-cp313-cp313-macosx_14_0_arm64.whl593cb311f5170cbcfcefb587cdcc70bb numpy-2.3.1-cp313-cp313-macosx_14_0_x86_64.whl22935447e75acda4075c57b332c0236a numpy-2.3.1-cp313-cp313-manylinux_2_28_aarch64.whl5aa2040f947204e15e95ec87461a7e91 numpy-2.3.1-cp313-cp313-manylinux_2_28_x86_64.whl6516337f0347974fada21a23a818be64 numpy-2.3.1-cp313-cp313-musllinux_1_2_aarch64.whlec956eb37b874b1ec52d6ffccda6ef65 numpy-2.3.1-cp313-cp313-musllinux_1_2_x86_64.whl0aaed62cb1bae9c1b1a44d1a4eda2db7 numpy-2.3.1-cp313-cp313-win32.whl57829996fc12f649547f0258443bbb20 numpy-2.3.1-cp313-cp313-win_amd64.whla0d0dd68bbf0ab378142b2daff0a8e06 numpy-2.3.1-cp313-cp313-win_arm64.whlb22dc66970a8017e4d0ce83ef8c938af numpy-2.3.1-cp313-cp313t-macosx_10_13_x86_64.whl93c17afb38cf8fd876ca2bd9ea7e9612 numpy-2.3.1-cp313-cp313t-macosx_11_0_arm64.whl283064dabb434f3dbc1a5e2514b9cb29 numpy-2.3.1-cp313-cp313t-macosx_14_0_arm64.whl5b8c778033c98b4a0ce6e5bfc7625f05 numpy-2.3.1-cp313-cp313t-macosx_14_0_x86_64.whl2340bd78962f194bcdbee6531d954acc numpy-2.3.1-cp313-cp313t-manylinux_2_28_aarch64.whl43a92ad37dc68d719bdeeeb65b3f4d2f numpy-2.3.1-cp313-cp313t-manylinux_2_28_x86_64.whleb110c4aa0d73558187397ddfba179ad numpy-2.3.1-cp313-cp313t-musllinux_1_2_aarch64.whl1f7f0076411ed4afa9c4553eb06564cb numpy-2.3.1-cp313-cp313t-musllinux_1_2_x86_64.whl30f30dde6f806070b2164e48a632a350 numpy-2.3.1-cp313-cp313t-win32.whl2375e2f2a5b75c5f5c908af6bb85d639 numpy-2.3.1-cp313-cp313t-win_amd64.whlb421530a87bb8e9e3d4dc34c75d5d953 numpy-2.3.1-cp313-cp313t-win_arm64.whlb1bc3cbf9cd407964b2bb25dfe86ca3d numpy-2.3.1-pp311-pypy311_pp73-macosx_10_15_x86_64.whl4c2e234eb4f346f362d6e6c620fa7a56 numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_arm64.whl98ec3c19a365d0ae926113bb349e323b numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_x86_64.whle0c7bcd526cde46489d5a8f12e06cc77 numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl41f535aa1f1acaf3d8a32a462a4cd4c8 numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl2abf906a6688c98693045cbbc655d5b7 numpy-2.3.1-pp311-pypy311_pp73-win_amd64.whl886559a4c541298b37245e389ce8bf10 numpy-2.3.1.tar.gzSHA256
6ea9e48336a402551f52cd8f593343699003d2353daa4b72ce8d34f66b722070 numpy-2.3.1-cp311-cp311-macosx_10_9_x86_64.whl5ccb7336eaf0e77c1635b232c141846493a588ec9ea777a7c24d7166bb8533ae numpy-2.3.1-cp311-cp311-macosx_11_0_arm64.whl0bb3a4a61e1d327e035275d2a993c96fa786e4913aa089843e6a2d9dd205c66a numpy-2.3.1-cp311-cp311-macosx_14_0_arm64.whle344eb79dab01f1e838ebb67aab09965fb271d6da6b00adda26328ac27d4a66e numpy-2.3.1-cp311-cp311-macosx_14_0_x86_64.whl467db865b392168ceb1ef1ffa6f5a86e62468c43e0cfb4ab6da667ede10e58db numpy-2.3.1-cp311-cp311-manylinux_2_28_aarch64.whlafed2ce4a84f6b0fc6c1ce734ff368cbf5a5e24e8954a338f3bdffa0718adffb numpy-2.3.1-cp311-cp311-manylinux_2_28_x86_64.whl0025048b3c1557a20bc80d06fdeb8cc7fc193721484cca82b2cfa072fec71a93 numpy-2.3.1-cp311-cp311-musllinux_1_2_aarch64.whla5ee121b60aa509679b682819c602579e1df14a5b07fe95671c8849aad8f2115 numpy-2.3.1-cp311-cp311-musllinux_1_2_x86_64.whla8b740f5579ae4585831b3cf0e3b0425c667274f82a484866d2adf9570539369 numpy-2.3.1-cp311-cp311-win32.whld4580adadc53311b163444f877e0789f1c8861e2698f6b2a4ca852fda154f3ff numpy-2.3.1-cp311-cp311-win_amd64.whlec0bdafa906f95adc9a0c6f26a4871fa753f25caaa0e032578a30457bff0af6a numpy-2.3.1-cp311-cp311-win_arm64.whl2959d8f268f3d8ee402b04a9ec4bb7604555aeacf78b360dc4ec27f1d508177d numpy-2.3.1-cp312-cp312-macosx_10_13_x86_64.whl762e0c0c6b56bdedfef9a8e1d4538556438288c4276901ea008ae44091954e29 numpy-2.3.1-cp312-cp312-macosx_11_0_arm64.whl867ef172a0976aaa1f1d1b63cf2090de8b636a7674607d514505fb7276ab08fc numpy-2.3.1-cp312-cp312-macosx_14_0_arm64.whl4e602e1b8682c2b833af89ba641ad4176053aaa50f5cacda1a27004352dde943 numpy-2.3.1-cp312-cp312-macosx_14_0_x86_64.whl8e333040d069eba1652fb08962ec5b76af7f2c7bce1df7e1418c8055cf776f25 numpy-2.3.1-cp312-cp312-manylinux_2_28_aarch64.whle7cbf5a5eafd8d230a3ce356d892512185230e4781a361229bd902ff403bc660 numpy-2.3.1-cp312-cp312-manylinux_2_28_x86_64.whl5f1b8f26d1086835f442286c1d9b64bb3974b0b1e41bb105358fd07d20872952 numpy-2.3.1-cp312-cp312-musllinux_1_2_aarch64.whlee8340cb48c9b7a5899d1149eece41ca535513a9698098edbade2a8e7a84da77 numpy-2.3.1-cp312-cp312-musllinux_1_2_x86_64.whle772dda20a6002ef7061713dc1e2585bc1b534e7909b2030b5a46dae8ff077ab numpy-2.3.1-cp312-cp312-win32.whlcfecc7822543abdea6de08758091da655ea2210b8ffa1faf116b940693d3df76 numpy-2.3.1-cp312-cp312-win_amd64.whl7be91b2239af2658653c5bb6f1b8bccafaf08226a258caf78ce44710a0160d30 numpy-2.3.1-cp312-cp312-win_arm64.whl25a1992b0a3fdcdaec9f552ef10d8103186f5397ab45e2d25f8ac51b1a6b97e8 numpy-2.3.1-cp313-cp313-macosx_10_13_x86_64.whl7dea630156d39b02a63c18f508f85010230409db5b2927ba59c8ba4ab3e8272e numpy-2.3.1-cp313-cp313-macosx_11_0_arm64.whlbada6058dd886061f10ea15f230ccf7dfff40572e99fef440a4a857c8728c9c0 numpy-2.3.1-cp313-cp313-macosx_14_0_arm64.whla894f3816eb17b29e4783e5873f92faf55b710c2519e5c351767c51f79d8526d numpy-2.3.1-cp313-cp313-macosx_14_0_x86_64.whl18703df6c4a4fee55fd3d6e5a253d01c5d33a295409b03fda0c86b3ca2ff41a1 numpy-2.3.1-cp313-cp313-manylinux_2_28_aarch64.whl5902660491bd7a48b2ec16c23ccb9124b8abfd9583c5fdfa123fe6b421e03de1 numpy-2.3.1-cp313-cp313-manylinux_2_28_x86_64.whl36890eb9e9d2081137bd78d29050ba63b8dab95dff7912eadf1185e80074b2a0 ...Assets5
Uh oh!
There was an error while loading.Please reload this page.
v2.3.0 (June 7, 2025)
0532af4NumPy 2.3.0 Release Notes
The NumPy 2.3.0 release continues the work to improve free threaded
Python support and annotations together with the usual set of bug fixes.
It is unusual in the number of expired deprecations, code
modernizations, and style cleanups. The latter may not be visible to
users, but is important for code maintenance over the long term. Note
that we have also upgraded from manylinux2014 to manylinux_2_28.
Users running on a Mac having an M4 cpu might see various warnings about
invalid values and such. The warnings are a known problem with
Accelerate. They are annoying, but otherwise harmless. Apple promises to
fix them.
This release supports Python versions 3.11-3.13, Python 3.14 will be
supported when it is released.
Highlights
- Interactive examples in the NumPy documentation.
- Building NumPy with OpenMP Parallelization.
- Preliminary support for Windows on ARM.
- Improved support for free threaded Python.
- Improved annotations.
New functions
New functionnumpy.strings.slice
The new functionnumpy.strings.slice was added, which implements fast
native slicing of string arrays. It supports the full slicing API
including negative slice offsets and steps.
(gh-27789)
Deprecations
The
numpy.typing.mypy_pluginhas been deprecated in favor of
platform-agnostic static type inference. Please removenumpy.typing.mypy_pluginfrom thepluginssection of your mypy
configuration. If this change results in new errors being reported,
kindly open an issue.(gh-28129)
The
numpy.typing.NBitBasetype has been deprecated and will be
removed in a future version.This type was previously intended to be used as a generic upper
bound for type-parameters, for example:importnumpyasnpimportnumpy.typingasnptdeff[NT:npt.NBitBase](x:np.complexfloating[NT])->np.floating[NT]: ...
But in NumPy 2.2.0,
float64andcomplex128were changed to
concrete subtypes, causing static type-checkers to rejectx: np.float64 = f(np.complex128(42j)).So instead, the better approach is to use
typing.overload:importnumpyasnpfromtypingimportoverload@overloaddeff(x:np.complex64)->np.float32: ...@overloaddeff(x:np.complex128)->np.float64: ...@overloaddeff(x:np.clongdouble)->np.longdouble: ...
(gh-28884)
Expired deprecations
Remove deprecated macros like
NPY_OWNDATAfrom Cython interfaces
in favor ofNPY_ARRAY_OWNDATA(deprecated since 1.7)(gh-28254)
Remove
numpy/npy_1_7_deprecated_api.hand C macros likeNPY_OWNDATAin favor ofNPY_ARRAY_OWNDATA(deprecated since 1.7)(gh-28254)
Remove alias
generate_divbyzero_errortonpy_set_floatstatus_divbyzeroandgenerate_overflow_errortonpy_set_floatstatus_overflow(deprecated since 1.10)(gh-28254)
Remove
np.tostring(deprecated since 1.19)(gh-28254)
Raise on
np.conjugateof non-numeric types (deprecated since 1.13)(gh-28254)
Raise when using
np.bincount(...minlength=None), use 0 instead
(deprecated since 1.14)(gh-28254)
Passing
shape=Noneto functions with a non-optional shape argument
errors, use()instead (deprecated since 1.20)(gh-28254)
Inexact matches for
modeandsearchsideraise (deprecated since
1.20)(gh-28254)
Setting
__array_finalize__ = Noneerrors (deprecated since 1.23)(gh-28254)
np.fromfileandnp.fromstringerror on bad data, previously they
would guess (deprecated since 1.18)(gh-28254)
datetime64andtimedelta64construction with a tuple no longer
accepts aneventvalue, either use a two-tuple of (unit, num) or a
4-tuple of (unit, num, den, 1) (deprecated since 1.14)(gh-28254)
When constructing a
dtypefrom a class with adtypeattribute,
that attribute must be a dtype-instance rather than a thing that can
be parsed as a dtype instance (deprecated in 1.19). At some point
the whole construct of using a dtype attribute will be deprecated
(see#25306)(gh-28254)
Passing booleans as partition index errors (deprecated since 1.23)
(gh-28254)
Out-of-bounds indexes error even on empty arrays (deprecated since
1.20)(gh-28254)
np.tostringhas been removed, usetobytesinstead (deprecated
since 1.19)(gh-28254)
Disallow make a non-writeable array writeable for arrays with a base
that do not own their data (deprecated since 1.17)(gh-28254)
concatenate()withaxis=Noneusessame-kindcasting by
default, notunsafe(deprecated since 1.20)(gh-28254)
Unpickling a scalar with object dtype errors (deprecated since 1.20)
(gh-28254)
The binary mode of
fromstringnow errors, usefrombufferinstead
(deprecated since 1.14)(gh-28254)
Converting
np.inexactornp.floatingto a dtype errors
(deprecated since 1.19)(gh-28254)
Converting
np.complex,np.integer,np.signedinteger,np.unsignedinteger,np.genericto a dtype errors (deprecated
since 1.19)(gh-28254)
The Python built-in
rounderrors for complex scalars. Usenp.roundorscalar.roundinstead (deprecated since 1.19)(gh-28254)
'np.bool' scalars can no longer be interpreted as an index
(deprecated since 1.19)(gh-28254)
Parsing an integer via a float string is no longer supported.
(deprecated since 1.23) To avoid this error you can- make sure the original data is stored as integers.
- use the
converters=floatkeyword argument. - Use
np.loadtxt(...).astype(np.int64)
(gh-28254)
The use of a length 1 tuple for the ufunc
signatureerrors. Usedtypeor fill the tuple withNone(deprecated since 1.19)(gh-28254)
Special handling of matrix is in np.outer is removed. Convert to a
ndarray viamatrix.A(deprecated since 1.20)(gh-28254)
Removed the
np.compatpackage source code (removed in 2.0)(gh-28961)
C API changes
NpyIter_GetTransferFlagsis now available to check if the iterator
needs the Python API or if casts may cause floating point errors
(FPE). FPEs can for example be set when castingfloat64(1e300)tofloat32(overflow to infinity) or a NaN to an integer (invalid
value).(gh-27883)
NpyIternow has no limit on the number of operands it supports.(gh-28080)
NewNpyIter_GetTransferFlags andNpyIter_IterationNeedsAPI change
NumPy now has the newNpyIter_GetTransferFlags function as a more
precise way checking of iterator/buffering needs. I.e. whether the
Python API/GIL is required or floating point errors may occur. This
function is also faster if you already know your needs without
buffering.
TheNpyIter_IterationNeedsAPI function now performs all the checks
that were previously performed at setup time. While it was never
necessary to call it multiple times, doing so will now have a larger
cost.
(gh-27998)
New Features
The type parameter of
np.dtypenow defaults totyping.Any. This
way, static type-checkers will inferdtype: np.dtypeasdtype: np.dtype[Any], without reporting an error.(gh-28669)
Static type-checkers now interpret:
_: np.ndarrayas_: npt.NDArray[typing.Any]._: np.flatiteras_: np.flatiter[np.ndarray].
This is because their type parameters now have default values.
(gh-28940)
NumPy now registers its pkg-config paths with thepkgconf PyPI package
Thepkgconf PyPI
package provides an interface for projects like NumPy to register their
own paths to be added to the pkg-config search path. This means that
when usingpkgconf
from PyPI, NumPy will be discoverable without needin...
Assets5
Uh oh!
There was an error while loading.Please reload this page.
v2.3.0rc1 (May 25, 2025)
3abd587NumPy 2.3.0 Release Notes
The NumPy 2.3.0 release continues the work to improve free threaded
Python support and annotations together with the usual set of bug fixes.
It is unusual in the number of expired deprecations and the number of
code modernizations and style cleanups. The latter may not be visible to
users, but is important for code maintenance over the long term. Note
that we have also upgraded from manylinux2014 to manylinux_2_28.
There are known test failures in the rc1 release involving MyPy and
PyPy. The cause of both has been determined and fixes will be applied
before the final release. The current Windows on ARM wheels also lack
OpenBLAS, but they should suffice for initial downstream testing.
OpenBLAS will be incorporated in those wheels when it becomes available.
This release supports Python versions 3.11-3.13, Python 3.14 will be
supported when it is released.
Highlights
- Interactive examples in the NumPy documentation.
- Building NumPy with OpenMP Parallelization.
- Preliminary support for Windows on ARM.
- Improved support for free threaded Python.
- Improved annotations.
New functions
New functionnumpy.strings.slice
The new functionnumpy.strings.slice was added, which implements fast
native slicing of string arrays. It supports the full slicing API
including negative slice offsets and steps.
(gh-27789)
Deprecations
The
numpy.typing.mypy_pluginhas been deprecated in favor of
platform-agnostic static type inference. Please removenumpy.typing.mypy_pluginfrom thepluginssection of your mypy
configuration. If this change results in new errors being reported,
kindly open an issue.(gh-28129)
The
numpy.typing.NBitBasetype has been deprecated and will be
removed in a future version.This type was previously intended to be used as a generic upper
bound for type-parameters, for example:importnumpyasnpimportnumpy.typingasnptdeff[NT:npt.NBitBase](x:np.complexfloating[NT])->np.floating[NT]: ...
But in NumPy 2.2.0,
float64andcomplex128were changed to
concrete subtypes, causing static type-checkers to rejectx: np.float64 = f(np.complex128(42j)).So instead, the better approach is to use
typing.overload:importnumpyasnpfromtypingimportoverload@overloaddeff(x:np.complex64)->np.float32: ...@overloaddeff(x:np.complex128)->np.float64: ...@overloaddeff(x:np.clongdouble)->np.longdouble: ...
(gh-28884)
Expired deprecations
Remove deprecated macros like
NPY_OWNDATAfrom Cython interfaces
in favor ofNPY_ARRAY_OWNDATA(deprecated since 1.7)(gh-28254)
Remove
numpy/npy_1_7_deprecated_api.hand C macros likeNPY_OWNDATAin favor ofNPY_ARRAY_OWNDATA(deprecated since 1.7)(gh-28254)
Remove alias
generate_divbyzero_errortonpy_set_floatstatus_divbyzeroandgenerate_overflow_errortonpy_set_floatstatus_overflow(deprecated since 1.10)(gh-28254)
Remove
np.tostring(deprecated since 1.19)(gh-28254)
Raise on
np.conjugateof non-numeric types (deprecated since 1.13)(gh-28254)
Raise when using
np.bincount(...minlength=None), use 0 instead
(deprecated since 1.14)(gh-28254)
Passing
shape=Noneto functions with a non-optional shape argument
errors, use()instead (deprecated since 1.20)(gh-28254)
Inexact matches for
modeandsearchsideraise (deprecated since
1.20)(gh-28254)
Setting
__array_finalize__ = Noneerrors (deprecated since 1.23)(gh-28254)
np.fromfileandnp.fromstringerror on bad data, previously they
would guess (deprecated since 1.18)(gh-28254)
datetime64andtimedelta64construction with a tuple no longer
accepts aneventvalue, either use a two-tuple of (unit, num) or a
4-tuple of (unit, num, den, 1) (deprecated since 1.14)(gh-28254)
When constructing a
dtypefrom a class with adtypeattribute,
that attribute must be a dtype-instance rather than a thing that can
be parsed as a dtype instance (deprecated in 1.19). At some point
the whole construct of using a dtype attribute will be deprecated
(see#25306)(gh-28254)
Passing booleans as partition index errors (deprecated since 1.23)
(gh-28254)
Out-of-bounds indexes error even on empty arrays (deprecated since
1.20)(gh-28254)
np.tostringhas been removed, usetobytesinstead (deprecated
since 1.19)(gh-28254)
Disallow make a non-writeable array writeable for arrays with a base
that do not own their data (deprecated since 1.17)(gh-28254)
concatenate()withaxis=Noneusessame-kindcasting by
default, notunsafe(deprecated since 1.20)(gh-28254)
Unpickling a scalar with object dtype errors (deprecated since 1.20)
(gh-28254)
The binary mode of
fromstringnow errors, usefrombufferinstead
(deprecated since 1.14)(gh-28254)
Converting
np.inexactornp.floatingto a dtype errors
(deprecated since 1.19)(gh-28254)
Converting
np.complex,np.integer,np.signedinteger,np.unsignedinteger,np.genericto a dtype errors (deprecated
since 1.19)(gh-28254)
The Python built-in
rounderrors for complex scalars. Usenp.roundorscalar.roundinstead (deprecated since 1.19)(gh-28254)
'np.bool' scalars can no longer be interpreted as an index
(deprecated since 1.19)(gh-28254)
Parsing an integer via a float string is no longer supported.
(deprecated since 1.23) To avoid this error you can- make sure the original data is stored as integers.
- use the
converters=floatkeyword argument. - Use
np.loadtxt(...).astype(np.int64)
(gh-28254)
The use of a length 1 tuple for the ufunc
signatureerrors. Usedtypeor fill the tuple withNone(deprecated since 1.19)(gh-28254)
Special handling of matrix is in np.outer is removed. Convert to a
ndarray viamatrix.A(deprecated since 1.20)(gh-28254)
Removed the
np.compatpackage source code (removed in 2.0)(gh-28961)
C API changes
NpyIter_GetTransferFlagsis now available to check if the iterator
needs the Python API or if casts may cause floating point errors
(FPE). FPEs can for example be set when castingfloat64(1e300)tofloat32(overflow to infinity) or a NaN to an integer (invalid
value).(gh-27883)
NpyIternow has no limit on the number of operands it supports.(gh-28080)
NewNpyIter_GetTransferFlags andNpyIter_IterationNeedsAPI change
NumPy now has the newNpyIter_GetTransferFlags function as a more
precise way checking of iterator/buffering needs. I.e. whether the
Python API/GIL is required or floating point errors may occur. This
function is also faster if you already know your needs without
buffering.
TheNpyIter_IterationNeedsAPI function now performs all the checks
that were previously performed at setup time. While it was never
necessary to call it multiple times, doing so will now have a larger
cost.
(gh-27998)
New Features
The type parameter of
np.dtypenow defaults totyping.Any. This
way, static type-checkers will inferdtype: np.dtypeasdtype: np.dtype[Any], without reporting an error.(gh-28669)
Static type-checkers now interpret:
_: np.ndarrayas_: npt.NDArray[typing.Any]._: np.flatiteras_: np.flatiter[np.ndarray].
This is because their type parameters now have default values.
(gh-28940)
NumPy now registers its pkg-config paths with thepkgconf PyPI package
Thepkgconf PyPI
package provides an interface for projects like NumPy to register their
own paths to be added to the pkg-config search path...
Assets5
Uh oh!
There was an error while loading.Please reload this page.
v2.2.6 (May 17, 2025)
2b686f6NumPy 2.2.6 Release Notes
NumPy 2.2.6 is a patch release that fixes bugs found after the 2.2.5
release. It is a mix of typing fixes/improvements as well as the normal
bug fixes and some CI maintenance.
This release supports Python versions 3.10-3.13.
Contributors
A total of 8 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.
- Charles Harris
- Ilhan Polat
- Joren Hammudoglu
- Marco Gorelli +
- Matti Picus
- Nathan Goldbaum
- Peter Hawkins
- Sayed Adel
Pull requests merged
A total of 11 pull requests were merged for this release.
- #28778: MAINT: Prepare 2.2.x for further development
- #28851: BLD: Update vendor-meson to fix module_feature conflicts arguments...
- #28852: BUG: fix heap buffer overflow in np.strings.find
- #28853: TYP: fix
NDArray[floating] + floatreturn type - #28864: BUG: fix stringdtype singleton thread safety
- #28865: MAINT: use OpenBLAS 0.3.29
- #28889: MAINT: from_dlpack thread safety fixes
- #28913: TYP: Fix non-existent
CanIndexannotation inndarray.setfield - #28915: MAINT: Avoid dereferencing/strict aliasing warnings
- #28916: BUG: Fix missing check for PyErr_Occurred() in _pyarray_correlate.
- #28966: TYP: reject complex scalar types in ndarray.__ifloordiv__
Checksums
MD5
259343f056061f6eadb2f4b8999d06d4 numpy-2.2.6-cp310-cp310-macosx_10_9_x86_64.whl16fa85488e149489ce7ee044d7b0d307 numpy-2.2.6-cp310-cp310-macosx_11_0_arm64.whlf01b7aea9d2b76b1eeb49766e615d689 numpy-2.2.6-cp310-cp310-macosx_14_0_arm64.whlf2ddc2b22517f6e31caa1372b12c2499 numpy-2.2.6-cp310-cp310-macosx_14_0_x86_64.whl52190e22869884f0870eb3df7a283ca9 numpy-2.2.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl8f382b9ca6770db600edd5ea2447a925 numpy-2.2.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whle604aae2ef6e01fb92ecc39aca0424d9 numpy-2.2.6-cp310-cp310-musllinux_1_2_aarch64.whl3e5626cf6d8bec95d430a7362e71691c numpy-2.2.6-cp310-cp310-musllinux_1_2_x86_64.whl8f4f1982837618ed7636ebd432234aeb numpy-2.2.6-cp310-cp310-win32.whl1cfd2ac5609b4800512f0ce304e19acc numpy-2.2.6-cp310-cp310-win_amd64.whl116203803ceeaa911dd64810b0305b4c numpy-2.2.6-cp311-cp311-macosx_10_9_x86_64.whl0427961f3a70ed92b1c4d2c5516c5803 numpy-2.2.6-cp311-cp311-macosx_11_0_arm64.whlfeb8104ed864d51c68984ff93f7255b5 numpy-2.2.6-cp311-cp311-macosx_14_0_arm64.whlf640cd91637f1d474947ecdb18d17ee8 numpy-2.2.6-cp311-cp311-macosx_14_0_x86_64.whl2f87d921a50fe50d04bb62125f8638dd numpy-2.2.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl7f986c33f49d5940d6d005ff7039e420 numpy-2.2.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl0f7073c78e0aede7179c537f64856db7 numpy-2.2.6-cp311-cp311-musllinux_1_2_aarch64.whl7402bbedcc0b59bd6cef1c483b77dac0 numpy-2.2.6-cp311-cp311-musllinux_1_2_x86_64.whl93c920d40abbc10d5d056b8bfbcdad74 numpy-2.2.6-cp311-cp311-win32.whl9162cb90bff0e4ba322f1e61da9f2fba numpy-2.2.6-cp311-cp311-win_amd64.whl75e9fa94b0a6ef568b532f6e0773a6a7 numpy-2.2.6-cp312-cp312-macosx_10_13_x86_64.whl79d8f89e82971bb2a2f61d0ef8f1a677 numpy-2.2.6-cp312-cp312-macosx_11_0_arm64.whlfb553e49196bce93af4b0d7e1e8fad1e numpy-2.2.6-cp312-cp312-macosx_14_0_arm64.whl01a338bc3a5349b5b7db4335fe879810 numpy-2.2.6-cp312-cp312-macosx_14_0_x86_64.whlf37533a7ae4aa95da824b1df2786ac55 numpy-2.2.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl2f9ac35f955d9217b6841568ce13d636 numpy-2.2.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whldf530a075c04dbef9abcac95d027c8bc numpy-2.2.6-cp312-cp312-musllinux_1_2_aarch64.whl4edf8f80feec739de3e08fffe97195a3 numpy-2.2.6-cp312-cp312-musllinux_1_2_x86_64.whl3e2664254d9a7bb5c66df2b108aaec2f numpy-2.2.6-cp312-cp312-win32.whlae2e39f1dba9b91d35edcd8736041df8 numpy-2.2.6-cp312-cp312-win_amd64.whl2faa32e27b81105db53fb2fc25a54e0d numpy-2.2.6-cp313-cp313-macosx_10_13_x86_64.whl0d05b1bb5af5059c8775a4f10fa0ec3d numpy-2.2.6-cp313-cp313-macosx_11_0_arm64.whlbb404027de8df58312964e26528ef591 numpy-2.2.6-cp313-cp313-macosx_14_0_arm64.whl1340a90e0f62a31691e475214f773196 numpy-2.2.6-cp313-cp313-macosx_14_0_x86_64.whl954981f2846e6735798fb33c1e6fba76 numpy-2.2.6-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl4e4eccd129b31fbef3ced7fb338e862e numpy-2.2.6-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whlc704c1c56c777bc0fc0d54bbcf9f2ddb numpy-2.2.6-cp313-cp313-musllinux_1_2_aarch64.whlfb459919a3433235312673bd5797ab8b numpy-2.2.6-cp313-cp313-musllinux_1_2_x86_64.whl9998e8ae155872c375ce6c020654176b numpy-2.2.6-cp313-cp313-win32.whl03df8a78963b318b4dfede10b213dce4 numpy-2.2.6-cp313-cp313-win_amd64.whld1982e582eae2fb076942c0bbedcefe4 numpy-2.2.6-cp313-cp313t-macosx_10_13_x86_64.whlcbc7a48b9ca730a8d40927666651430a numpy-2.2.6-cp313-cp313t-macosx_11_0_arm64.whlcd1d2271c05ccc502b78827b88ff7670 numpy-2.2.6-cp313-cp313t-macosx_14_0_arm64.whlc2b4fb7464e42af240ad51c8be5fb1ba numpy-2.2.6-cp313-cp313t-macosx_14_0_x86_64.whl6a96c540b8df291a128bb50dfdad0ba4 numpy-2.2.6-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl113d466026e770badd1061a6e1a8ca92 numpy-2.2.6-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl1fce5d26d8d6d021954f717b4bad483c numpy-2.2.6-cp313-cp313t-musllinux_1_2_aarch64.whld980d6c4b486ad09dbf62ac5cf1b0b2a numpy-2.2.6-cp313-cp313t-musllinux_1_2_x86_64.whl21571229d4376f3c0458d8eb1be3ba52 numpy-2.2.6-cp313-cp313t-win32.whl4accc0387feec817565aeaba93c79173 numpy-2.2.6-cp313-cp313t-win_amd64.whl774589ee5f842137322ff19b56a35270 numpy-2.2.6-pp310-pypy310_pp73-macosx_10_15_x86_64.whlf934cef42ac65a2094dd5280aa6bf9a2 numpy-2.2.6-pp310-pypy310_pp73-macosx_14_0_x86_64.whl0e53fbb4195726c62b8f237a4bf545e9 numpy-2.2.6-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl3c96c89609022ecd27d44b12c2349a06 numpy-2.2.6-pp310-pypy310_pp73-win_amd64.whl63d66dc1db9d603df0a84c870e703cfc numpy-2.2.6.tar.gzSHA256
b412caa66f72040e6d268491a59f2c43bf03eb6c96dd8f0307829feb7fa2b6fb numpy-2.2.6-cp310-cp310-macosx_10_9_x86_64.whl8e41fd67c52b86603a91c1a505ebaef50b3314de0213461c7a6e99c9a3beff90 numpy-2.2.6-cp310-cp310-macosx_11_0_arm64.whl37e990a01ae6ec7fe7fa1c26c55ecb672dd98b19c3d0e1d1f326fa13cb38d163 numpy-2.2.6-cp310-cp310-macosx_14_0_arm64.whl5a6429d4be8ca66d889b7cf70f536a397dc45ba6faeb5f8c5427935d9592e9cf numpy-2.2.6-cp310-cp310-macosx_14_0_x86_64.whlefd28d4e9cd7d7a8d39074a4d44c63eda73401580c5c76acda2ce969e0a38e83 numpy-2.2.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whlfc7b73d02efb0e18c000e9ad8b83480dfcd5dfd11065997ed4c6747470ae8915 numpy-2.2.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl74d4531beb257d2c3f4b261bfb0fc09e0f9ebb8842d82a7b4209415896adc680 numpy-2.2.6-cp310-cp310-musllinux_1_2_aarch64.whl8fc377d995680230e83241d8a96def29f204b5782f371c532579b4f20607a289 numpy-2.2.6-cp310-cp310-musllinux_1_2_x86_64.whlb093dd74e50a8cba3e873868d9e93a85b78e0daf2e98c6797566ad8044e8363d numpy-2.2.6-cp310-cp310-win32.whlf0fd6321b839904e15c46e0d257fdd101dd7f530fe03fd6359c1ea63738703f3 numpy-2.2.6-cp310-cp310-win_amd64.whlf9f1adb22318e121c5c69a09142811a201ef17ab257a1e66ca3025065b7f53ae numpy-2.2.6-cp311-cp311-macosx_10_9_x86_64.whlc820a93b0255bc360f53eca31a0e676fd1101f673dda8da93454a12e23fc5f7a numpy-2.2.6-cp311-cp311-macosx_11_0_arm64.whl3d70692235e759f260c3d837193090014aebdf026dfd167834bcba43e30c2a42 numpy-2.2.6-cp311-cp311-macosx_14_0_arm64.whl481b49095335f8eed42e39e8041327c05b0f6f4780488f61286ed3c01368d491 numpy-2.2.6-cp311-cp311-macosx_14_0_x86_64.whlb64d8d4d17135e00c8e346e0a738deb17e754230d7e0810ac5012750bbd85a5a numpy-2.2.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whlba10f8411898fc418a521833e014a77d3ca01c15b0c6cdcce6a0d2897e6dbbdf numpy-2.2.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whlbd48227a919f1bafbdda0583705e547892342c26fb127219d60a5c36882609d1 numpy-2.2.6-cp311-cp311-musllinux_1_2_aarch64.whl9551a499bf125c1d4f9e250377c1ee2eddd02e01eac6644c080162c0c51778ab numpy-2.2.6-cp311-cp311-musllinux_1_2_x86_64.whl0678000bb9ac1475cd454c6b8c799206af8107e310843532b04d49649c717a47 numpy-2.2.6-cp311-cp311-win32.whle8213002e427c69c45a52bbd94163084025f533a55a59d6f9c5b820774ef3303 numpy-2.2.6-cp311-cp311-win_amd64.whl41c5a21f4a04fa86436124d388f6ed60a9343a6f767fced1a8a71c3fbca038ff numpy-2.2.6-cp312-cp312-macosx_10_13_x86_64.whlde749064336d37e340f640b05f24e9e3dd678c57318c7289d222a8a2f543e90c numpy-2.2.6-cp312-cp312-macosx_11_0_arm64.whl894b3a42502226a1cac872f840030665f33326fc3dac8e57c607905773cdcde3 numpy-2.2.6-cp312-cp312-macosx_14_0_arm64.whl71594f7c51a18e728451bb50cc60a3ce4e6538822731b2933209a1f3614e9282 numpy-2.2.6-cp312-cp312-macosx_14_0_x86_64.whlf2618db89be1b4e05f7a1a847a9c1c0abd63e63a1607d892dd54668dd92faf87 numpy-2.2.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whlfd83c01228a688733f1ded5201c678f0c53ecc1006ffbc404db9f7a899ac6249 numpy-2.2.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64...Assets5
Uh oh!
There was an error while loading.Please reload this page.
v2.2.5 (Apr 19, 2025)
7be8c1fNumPy 2.2.5 Release Notes
NumPy 2.2.5 is a patch release that fixes bugs found after the 2.2.4
release. It has a large number of typing fixes/improvements as well as
the normal bug fixes and some CI maintenance.
This release supports Python versions 3.10-3.13.
Contributors
A total of 7 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.
- Charles Harris
- Joren Hammudoglu
- Baskar Gopinath +
- Nathan Goldbaum
- Nicholas Christensen +
- Sayed Adel
- karl +
Pull requests merged
A total of 19 pull requests were merged for this release.
- #28545: MAINT: Prepare 2.2.x for further development
- #28582: BUG: Fix return type of NpyIter_GetIterNext in Cython declarations
- #28583: BUG: avoid deadlocks with C++ shared mutex in dispatch cache
- #28585: TYP: fix typing errors in
_core.strings - #28631: MAINT, CI: Update Ubuntu to 22.04 in azure-pipelines
- #28632: BUG: Set writeable flag for writeable dlpacks.
- #28633: BUG: Fix crackfortran parsing error when a division occurs within...
- #28650: TYP: fix
ndarray.tolist()and.item()for unknown dtype - #28654: BUG: fix deepcopying StringDType arrays (#28643)
- #28661: TYP: Accept objects that
write()tostrinsavetxt - #28663: CI: Replace QEMU armhf with native (32-bit compatibility mode)
- #28682: SIMD: Resolve Highway QSort symbol linking error on aarch32/ASIMD
- #28683: TYP: add missing
"b1"literals fordtype[bool] - #28705: TYP: Fix false rejection of
NDArray[object_].__abs__() - #28706: TYP: Fix inconsistent
NDArray[float64].__[r]truediv__return... - #28723: TYP: fix string-like
ndarrayrich comparison operators - #28758: TYP: some
[arg]partitionfixes - #28772: TYP: fix incorrect
random.Generator.integersreturn type - #28774: TYP: fix
count_nonzerosignature
Checksums
MD5
3a5d0889d6d7951f44bc6f7a03fa30c6 numpy-2.2.5-cp310-cp310-macosx_10_9_x86_64.whlbcf9f4e768b070e17b2635f422a6e27d numpy-2.2.5-cp310-cp310-macosx_11_0_arm64.whle82c8fa47a65bb5c2c83295f549dab12 numpy-2.2.5-cp310-cp310-macosx_14_0_arm64.whla5511a995c0f79a8b9a81f2b50e9f692 numpy-2.2.5-cp310-cp310-macosx_14_0_x86_64.whl72bfc1f98238a8e4ba08999e61111e0e numpy-2.2.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl146c83a5b8099d8d2607392b2ef7fedf numpy-2.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl6ebdc80b54b008a10575e5d7bbb613f5 numpy-2.2.5-cp310-cp310-musllinux_1_2_aarch64.whl97efde6443da8f9280a5fc2614a087e5 numpy-2.2.5-cp310-cp310-musllinux_1_2_x86_64.whlc143f352206cec535b41b6b1d34c5898 numpy-2.2.5-cp310-cp310-win32.whl0b17fbbf584785f675f1c5b24a00ff93 numpy-2.2.5-cp310-cp310-win_amd64.whl58532622d7eff69a3c71c1ae89dea070 numpy-2.2.5-cp311-cp311-macosx_10_9_x86_64.whl0d002c733bb02debe0b15de5ba872d1e numpy-2.2.5-cp311-cp311-macosx_11_0_arm64.whlff0c736c60be96506806061ace2251a1 numpy-2.2.5-cp311-cp311-macosx_14_0_arm64.whl4febdec973c4405fd08ef35e0c130de1 numpy-2.2.5-cp311-cp311-macosx_14_0_x86_64.whl0bf4e457c612e565420e135458e70fe0 numpy-2.2.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whla43b608ad15ebdc0960611497205d598 numpy-2.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl7b4b1afd412149a9af7c25d7346fade8 numpy-2.2.5-cp311-cp311-musllinux_1_2_aarch64.whla1e70be013820f92dbfd4796fc4044bb numpy-2.2.5-cp311-cp311-musllinux_1_2_x86_64.whl73344e05a6fec0b38183363b4a026252 numpy-2.2.5-cp311-cp311-win32.whlb7d5fdd23057c58d15c84eef6bfedb55 numpy-2.2.5-cp311-cp311-win_amd64.whl801b11bb546aac2d92d7b3d5d6c90e86 numpy-2.2.5-cp312-cp312-macosx_10_13_x86_64.whl68dc4298cad9405ad30cfb723be4ae48 numpy-2.2.5-cp312-cp312-macosx_11_0_arm64.whlc31c872e0fa8df5ed7f91882621a925f numpy-2.2.5-cp312-cp312-macosx_14_0_arm64.whl179dfa545c32c44b77cf8db3b973785f numpy-2.2.5-cp312-cp312-macosx_14_0_x86_64.whl4562513ff2f1e3f31d66b8e435000141 numpy-2.2.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whlc80a2d8aab1a4d6a66f3fca2f0744744 numpy-2.2.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whle363e0d8c116522d55b0ddd0cbf2de67 numpy-2.2.5-cp312-cp312-musllinux_1_2_aarch64.whld31d443270c76b7238ece2f87b048d21 numpy-2.2.5-cp312-cp312-musllinux_1_2_x86_64.whlbf469fe048fa4ed75a5d8725297e283a numpy-2.2.5-cp312-cp312-win32.whl069b832aa15b6a815497135e7fa8cae8 numpy-2.2.5-cp312-cp312-win_amd64.whlb2cf059c831cbcfdb4044613a1e5bc8d numpy-2.2.5-cp313-cp313-macosx_10_13_x86_64.whl70bcb93e55ff0f6602636602e0834607 numpy-2.2.5-cp313-cp313-macosx_11_0_arm64.whl00c4938d67fd5b658ad92ac26fbe9cab numpy-2.2.5-cp313-cp313-macosx_14_0_arm64.whl0ca38aa51874b9252a2c9d85f81dcd07 numpy-2.2.5-cp313-cp313-macosx_14_0_x86_64.whl6062cf707b8bc07a1600af0991a0a88e numpy-2.2.5-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl62c1cf7de0327546f3a1e3852de640d3 numpy-2.2.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whlab3ad3390396552f76160139cc528784 numpy-2.2.5-cp313-cp313-musllinux_1_2_aarch64.whld258ba55c9a3936fa0c113cac8bbc0cc numpy-2.2.5-cp313-cp313-musllinux_1_2_x86_64.whl59bb7e1acb81fc4a02c3b791e110f01e numpy-2.2.5-cp313-cp313-win32.whl2e5728a9e5c6405d3a22138e4dd7019f numpy-2.2.5-cp313-cp313-win_amd64.whld315521ec7275d0341787f2450e57e55 numpy-2.2.5-cp313-cp313t-macosx_10_13_x86_64.whl17018c7c259ae81cf2ca4f58523d7d1c numpy-2.2.5-cp313-cp313t-macosx_11_0_arm64.whlef6fd6a9c6a07db004a272b82f0ea710 numpy-2.2.5-cp313-cp313t-macosx_14_0_arm64.whl07b2baf70b84b44ca6924794d9c7e431 numpy-2.2.5-cp313-cp313t-macosx_14_0_x86_64.whla2fb1ed562d2b6da091d980c7486d113 numpy-2.2.5-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl22fa9137283f463436d7b20a220071cd numpy-2.2.5-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whlb0ae924e4834155eb5ac159ae611c292 numpy-2.2.5-cp313-cp313t-musllinux_1_2_aarch64.whlc7a8351484f2df9a499c68f1ac73121c numpy-2.2.5-cp313-cp313t-musllinux_1_2_x86_64.whl1da753e4127a0bdcdfbfa6639568057e numpy-2.2.5-cp313-cp313t-win32.whla8c869efc0888f214239e5c4f0e6acfb numpy-2.2.5-cp313-cp313t-win_amd64.whl7255b93f38e7d54a59d6798182f24c6a numpy-2.2.5-pp310-pypy310_pp73-macosx_10_15_x86_64.whl6743ce025de6c245b03ca8511b306503 numpy-2.2.5-pp310-pypy310_pp73-macosx_14_0_x86_64.whl5abbeec4ff2add1c46f8779f730c73fa numpy-2.2.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl8e2e01f02d05e111ef2b104d1b3afad1 numpy-2.2.5-pp310-pypy310_pp73-win_amd64.whldf2e46b468f9fdf06b13b04eca9a723f numpy-2.2.5.tar.gzSHA256
1f4a922da1729f4c40932b2af4fe84909c7a6e167e6e99f71838ce3a29f3fe26 numpy-2.2.5-cp310-cp310-macosx_10_9_x86_64.whlb6f91524d31b34f4a5fee24f5bc16dcd1491b668798b6d85585d836c1e633a6a numpy-2.2.5-cp310-cp310-macosx_11_0_arm64.whl19f4718c9012e3baea91a7dba661dcab2451cda2550678dc30d53acb91a7290f numpy-2.2.5-cp310-cp310-macosx_14_0_arm64.whleb7fd5b184e5d277afa9ec0ad5e4eb562ecff541e7f60e69ee69c8d59e9aeaba numpy-2.2.5-cp310-cp310-macosx_14_0_x86_64.whl6413d48a9be53e183eb06495d8e3b006ef8f87c324af68241bbe7a39e8ff54c3 numpy-2.2.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl7451f92eddf8503c9b8aa4fe6aa7e87fd51a29c2cfc5f7dbd72efde6c65acf57 numpy-2.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl0bcb1d057b7571334139129b7f941588f69ce7c4ed15a9d6162b2ea54ded700c numpy-2.2.5-cp310-cp310-musllinux_1_2_aarch64.whl36ab5b23915887543441efd0417e6a3baa08634308894316f446027611b53bf1 numpy-2.2.5-cp310-cp310-musllinux_1_2_x86_64.whl422cc684f17bc963da5f59a31530b3936f57c95a29743056ef7a7903a5dbdf88 numpy-2.2.5-cp310-cp310-win32.whle4f0b035d9d0ed519c813ee23e0a733db81ec37d2e9503afbb6e54ccfdee0fa7 numpy-2.2.5-cp310-cp310-win_amd64.whlc42365005c7a6c42436a54d28c43fe0e01ca11eb2ac3cefe796c25a5f98e5e9b numpy-2.2.5-cp311-cp311-macosx_10_9_x86_64.whl498815b96f67dc347e03b719ef49c772589fb74b8ee9ea2c37feae915ad6ebda numpy-2.2.5-cp311-cp311-macosx_11_0_arm64.whl6411f744f7f20081b1b4e7112e0f4c9c5b08f94b9f086e6f0adf3645f85d3a4d numpy-2.2.5-cp311-cp311-macosx_14_0_arm64.whl9de6832228f617c9ef45d948ec1cd8949c482238d68b2477e6f642c33a7b0a54 numpy-2.2.5-cp311-cp311-macosx_14_0_x86_64.whl369e0d4647c17c9363244f3468f2227d557a74b6781cb62ce57cf3ef5cc7c610 numpy-2.2.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl262d23f383170f99cd9191a7c85b9a50970fe9069b2f8ab5d786eca8a675d60b numpy-2.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whlaa70fdbdc3b169d69e8c59e65c07a1c9351ceb438e627f0fdcd471015cd956be numpy-2.2.5-cp311-cp311-musllinux_1_2_aarch64.whl37e32e985f03c06206582a7323ef926b4e78bdaa6915095ef08070471865b906 numpy-2.2.5-cp311-cp311-musllinux_1_2_x86_64.whlf5045039100ed58fa817a6227a356240...Assets5
Uh oh!
There was an error while loading.Please reload this page.
2.2.4 (Mar 16, 2025)
3b37785NumPy 2.2.4 Release Notes
NumPy 2.2.4 is a patch release that fixes bugs found after the 2.2.3
release. There are a large number of typing improvements, the rest of
the changes are the usual mix of bugfixes and platform maintenace.
This release supports Python versions 3.10-3.13.
Contributors
A total of 15 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.
- Abhishek Kumar
- Andrej Zhilenkov
- Andrew Nelson
- Charles Harris
- Giovanni Del Monte
- Guan Ming(Wesley) Chiu +
- Jonathan Albrecht +
- Joren Hammudoglu
- Mark Harfouche
- Matthieu Darbois
- Nathan Goldbaum
- Pieter Eendebak
- Sebastian Berg
- Tyler Reddy
- lvllvl +
Pull requests merged
A total of 17 pull requests were merged for this release.
- #28333: MAINT: Prepare 2.2.x for further development.
- #28348: TYP: fix positional- and keyword-only params in astype, cross...
- #28377: MAINT: Update FreeBSD version and fix test failure
- #28379: BUG: numpy.loadtxt reads only 50000 lines when skip_rows >= max_rows
- #28385: BUG: Make np.nonzero threading safe
- #28420: BUG: safer bincount casting (backport to 2.2.x)
- #28422: BUG: Fix building on s390x with clang
- #28423: CI: use QEMU 9.2.2 for Linux Qemu tests
- #28424: BUG: skip legacy dtype multithreaded test on 32 bit runners
- #28435: BUG: Fix searchsorted and CheckFromAny byte-swapping logic
- #28449: BUG: sanity check
__array_interface__number of dimensions - #28510: MAINT: Hide decorator from pytest traceback
- #28512: TYP: Typing fixes backported from#28452,#28491,#28494
- #28521: TYP: Backport fixes from#28505,#28506,#28508, and#28511
- #28533: TYP: Backport typing fixes from main (2)
- #28534: TYP: Backport typing fixes from main (3)
- #28542: TYP: Backport typing fixes from main (4)
Checksums
MD5
935928cbd2de140da097f6d5f4a01d72 numpy-2.2.4-cp310-cp310-macosx_10_9_x86_64.whlbf7fd01bb177885e920173b610c195d9 numpy-2.2.4-cp310-cp310-macosx_11_0_arm64.whl826e52cd898567a0c446113ab7a7b362 numpy-2.2.4-cp310-cp310-macosx_14_0_arm64.whl9982a91d7327aea541c24aff94d3e462 numpy-2.2.4-cp310-cp310-macosx_14_0_x86_64.whl5bdf5b63f4ee01fa808d13043b2a2275 numpy-2.2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl677b3031105e24eaee2e0e57d7c2a306 numpy-2.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whld857867787fe1eb236670e7fdb25f414 numpy-2.2.4-cp310-cp310-musllinux_1_2_aarch64.whla5aff3a7eb2923878e67fbe1cd04a9e9 numpy-2.2.4-cp310-cp310-musllinux_1_2_x86_64.whle00bd3ac85d8f34b46b7f97a8278aeb3 numpy-2.2.4-cp310-cp310-win32.whle5cb2a5d14bccee316bb73173be125ec numpy-2.2.4-cp310-cp310-win_amd64.whl494f60d8e1c3500413bd093bb3f486ea numpy-2.2.4-cp311-cp311-macosx_10_9_x86_64.whla886a9f3e80a60ce6ba95b431578bbca numpy-2.2.4-cp311-cp311-macosx_11_0_arm64.whl889f3b507bab9272d9b549780840a642 numpy-2.2.4-cp311-cp311-macosx_14_0_arm64.whl059788668d2c4e9aace4858e77c099ed numpy-2.2.4-cp311-cp311-macosx_14_0_x86_64.whldb9ae978afb76a4bf79df0657a66aaeb numpy-2.2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whle36963a4c177157dc7b0775c309fa5a8 numpy-2.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl3603e683878b74f38e5617f04ff6a369 numpy-2.2.4-cp311-cp311-musllinux_1_2_aarch64.whlafbc410fb9b42b19f4f7c81c21d6777f numpy-2.2.4-cp311-cp311-musllinux_1_2_x86_64.whl33ff8081378188894097942f80c33e26 numpy-2.2.4-cp311-cp311-win32.whl5b11fe8d26318d85e0bc577a654f6643 numpy-2.2.4-cp311-cp311-win_amd64.whl91121787f396d3e98210de8b617e5d48 numpy-2.2.4-cp312-cp312-macosx_10_13_x86_64.whlc524d1020b4652aacf4477d1628fa1ba numpy-2.2.4-cp312-cp312-macosx_11_0_arm64.whleb08f551bdd6772155bb39ac0da47479 numpy-2.2.4-cp312-cp312-macosx_14_0_arm64.whl7cb37fc9145d0ebbea5666b4f9ed1027 numpy-2.2.4-cp312-cp312-macosx_14_0_x86_64.whlc4452a5dc557c291904b5c51a4148237 numpy-2.2.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whlbd23a12ead870759f264160ab38b2c9d numpy-2.2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl07b44109381985b48d1eef80feebc5ad numpy-2.2.4-cp312-cp312-musllinux_1_2_aarch64.whl95f1a27d33106fa9f40ee0714681c840 numpy-2.2.4-cp312-cp312-musllinux_1_2_x86_64.whl507e550a55b19dedf267b58a487ba0bc numpy-2.2.4-cp312-cp312-win32.whlbe21ccbf8931e92ba1fdb2dc1250bf2a numpy-2.2.4-cp312-cp312-win_amd64.whle94003c2b65d81b00203711c5c42fb8e numpy-2.2.4-cp313-cp313-macosx_10_13_x86_64.whlcf781fd5412ffd826e0436883452cc17 numpy-2.2.4-cp313-cp313-macosx_11_0_arm64.whl92c9a30386a64f2deddad1db742bd296 numpy-2.2.4-cp313-cp313-macosx_14_0_arm64.whl7fd16554fa0a15b7f99b1fabf1c4592c numpy-2.2.4-cp313-cp313-macosx_14_0_x86_64.whl9293b0575a902b2d55c35567dee7679e numpy-2.2.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl9970699bd95e8a64a562b1e6328b83d0 numpy-2.2.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whle8597c611a919a8e88229d6889c1f86e numpy-2.2.4-cp313-cp313-musllinux_1_2_aarch64.whl329288501f012606605bdbed368e58e9 numpy-2.2.4-cp313-cp313-musllinux_1_2_x86_64.whl04bf8d0f6a9e279ab01df4ed0b4aeee1 numpy-2.2.4-cp313-cp313-win32.whl66801fe84a436b7ed3be6e0082b86917 numpy-2.2.4-cp313-cp313-win_amd64.whl3e2f31e01b45cd16a87b794477de3714 numpy-2.2.4-cp313-cp313t-macosx_10_13_x86_64.whl7504018213a3a8fea7173e2c1d0fcfd1 numpy-2.2.4-cp313-cp313t-macosx_11_0_arm64.whle299021397c3cdb941b7ffe77cf0fefe numpy-2.2.4-cp313-cp313t-macosx_14_0_arm64.whl1cc2731a246079bcab361179f38e7ccb numpy-2.2.4-cp313-cp313t-macosx_14_0_x86_64.whle6eccf936d25c9eda9df1a4d50ae2fdc numpy-2.2.4-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whlba825efd05cca6d56c3dca9f7f1f88e7 numpy-2.2.4-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl369eebec47c9c27cb4841a13e9522167 numpy-2.2.4-cp313-cp313t-musllinux_1_2_aarch64.whl554dbfa52988d01f715cbe8d4da4b409 numpy-2.2.4-cp313-cp313t-musllinux_1_2_x86_64.whl811d25a008c68086c9382487e9a4127a numpy-2.2.4-cp313-cp313t-win32.whl893fd2fdd42f386e300bee885bbb7778 numpy-2.2.4-cp313-cp313t-win_amd64.whl65e284546c5ee575eca0a3726c0a1d98 numpy-2.2.4-pp310-pypy310_pp73-macosx_10_15_x86_64.whle4e73511eac8f1a10c6abbd6fa2fa0aa numpy-2.2.4-pp310-pypy310_pp73-macosx_14_0_x86_64.whla884ed5263b91fa87b5e3d14caf955a5 numpy-2.2.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl7330087a6ad1527ae20a495e2fb3b357 numpy-2.2.4-pp310-pypy310_pp73-win_amd64.whl56232f4a69b03dd7a87a55fffc5f2ebc numpy-2.2.4.tar.gzSHA256
8146f3550d627252269ac42ae660281d673eb6f8b32f113538e0cc2a9aed42b9 numpy-2.2.4-cp310-cp310-macosx_10_9_x86_64.whle642d86b8f956098b564a45e6f6ce68a22c2c97a04f5acd3f221f57b8cb850ae numpy-2.2.4-cp310-cp310-macosx_11_0_arm64.whla84eda42bd12edc36eb5b53bbcc9b406820d3353f1994b6cfe453a33ff101775 numpy-2.2.4-cp310-cp310-macosx_14_0_arm64.whl4ba5054787e89c59c593a4169830ab362ac2bee8a969249dc56e5d7d20ff8df9 numpy-2.2.4-cp310-cp310-macosx_14_0_x86_64.whl7716e4a9b7af82c06a2543c53ca476fa0b57e4d760481273e09da04b74ee6ee2 numpy-2.2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whladf8c1d66f432ce577d0197dceaac2ac00c0759f573f28516246351c58a85020 numpy-2.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl218f061d2faa73621fa23d6359442b0fc658d5b9a70801373625d958259eaca3 numpy-2.2.4-cp310-cp310-musllinux_1_2_aarch64.whldf2f57871a96bbc1b69733cd4c51dc33bea66146b8c63cacbfed73eec0883017 numpy-2.2.4-cp310-cp310-musllinux_1_2_x86_64.whla0258ad1f44f138b791327961caedffbf9612bfa504ab9597157806faa95194a numpy-2.2.4-cp310-cp310-win32.whl0d54974f9cf14acf49c60f0f7f4084b6579d24d439453d5fc5805d46a165b542 numpy-2.2.4-cp310-cp310-win_amd64.whle9e0a277bb2eb5d8a7407e14688b85fd8ad628ee4e0c7930415687b6564207a4 numpy-2.2.4-cp311-cp311-macosx_10_9_x86_64.whl9eeea959168ea555e556b8188da5fa7831e21d91ce031e95ce23747b7609f8a4 numpy-2.2.4-cp311-cp311-macosx_11_0_arm64.whlbd3ad3b0a40e713fc68f99ecfd07124195333f1e689387c180813f0e94309d6f numpy-2.2.4-cp311-cp311-macosx_14_0_arm64.whlcf28633d64294969c019c6df4ff37f5698e8326db68cc2b66576a51fad634880 numpy-2.2.4-cp311-cp311-macosx_14_0_x86_64.whl2fa8fa7697ad1646b5c93de1719965844e004fcad23c91228aca1cf0800044a1 numpy-2.2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whlf4162988a360a29af158aeb4a2f4f09ffed6a969c9776f8f3bdee9b06a8ab7e5 numpy-2.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl892c10d6a73e0f14935c31229e03325a7b3093fafd6ce0af704be7f894d95687 numpy-2.2.4-cp311-cp311-musllinux_1_2_aarch64.whldb1f1c22173ac1c58db249ae48aa7ead29f534b9a948bc56828337aa84a32ed6 numpy-2.2.4-cp311-cp311-musllinux_1_2_x86_64.whlea2bb7e2ae9e37d96835b3576a4fa4b3a97592fbea8ef7c3587078b0068b8f09 numpy-2.2.4-cp311-cp311-win32.whlf7de08cbe5551911886d1ab60de...Assets5
Uh oh!
There was an error while loading.Please reload this page.