Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

TYP: Gradual shape type defaults#28982

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to ourterms of service andprivacy statement. We’ll occasionally send you account related emails.

Already on GitHub?Sign in to your account

Merged
charris merged 6 commits intonumpy:mainfromjorenham:typing/gradual-shape-type
May 19, 2025

Conversation

jorenham
Copy link
Member

@jorenhamjorenham commentedMay 16, 2025
edited
Loading

From thetyping spec:

The typetuple[Any, ...] is special in that it is consistent with all tuple types, and assignable to a tuple of any length. This is useful for gradual typing.

So by usingtuple[Any, ...] instead oftuple[int, ...] as shape-type default, we prevent situations where users are not allowed to assign an array with unknown shape-type to an array-type with aknown shape type.

The downside is that there are certain situations where (mostly) mypy will over-eagerly pick the first overload, where it would previously pick a different one. But I only saw this happen once in the tests, and managed to work around it.

Let's see what mypy_primer has to say about this.

@github-actionsGitHub Actions

This comment has been minimized.

@jorenhamjorenham marked this pull request as ready for reviewMay 16, 2025 07:31
@github-actionsGitHub Actions

This comment has been minimized.

@jorenham
Copy link
MemberAuthor

mypy primer is looking pretty good in general

@jorenhamjorenhamforce-pushed thetyping/gradual-shape-type branch frome190d6c toa16ef8cCompareMay 16, 2025 16:53
@github-actionsGitHub Actions
Copy link

Diff frommypy_primer, showing the effect of this PR on type check results on a corpus of open source code:

hydpy (https://github.com/hydpy-dev/hydpy)- hydpy/core/testtools.py:1516: error: Incompatible return value type (got "dict[ModelSequence, ndarray[tuple[int, int], dtype[float64]]]", expected "dict[ModelSequence, ndarray[tuple[int, ...], dtype[float64]]]")  [return-value]- hydpy/core/testtools.py:1516: note: "Dict" is invariant -- see https://mypy.readthedocs.io/en/stable/common_issues.html#variance- hydpy/core/testtools.py:1516: note: Consider using "Mapping" instead, which is covariant in the value type- hydpy/core/testtools.py:1516: note: Perhaps you need a type annotation for "yvalues"? Suggestion: "dict[ModelSequence, ndarray[tuple[int, ...], dtype[float64]]]"+ hydpy/core/objecttools.py:955: error: Argument 1 to "repr_values" has incompatible type "Sequence[object] | ndarray[tuple[Any, ...], dtype[generic[Any]]] | generic[Any]"; expected "Sequence[object] | ndarray[tuple[Any, ...], dtype[generic[Any]]]"  [arg-type]+ hydpy/core/netcdftools.py:489: error: Argument 1 to "join" of "bytes" has incompatible type "bytes_"; expected "Iterable[Buffer]"  [arg-type]+ hydpy/core/netcdftools.py:489: note: Following member(s) of "bytes_" have conflicts:+ hydpy/core/netcdftools.py:489: note:     Expected:+ hydpy/core/netcdftools.py:489: note:         def __iter__(self) -> Iterator[Buffer]+ hydpy/core/netcdftools.py:489: note:     Got:+ hydpy/core/netcdftools.py:489: note:         def __iter__(self) -> Iterator[int]+ hydpy/core/netcdftools.py:489: note:     Expected:+ hydpy/core/netcdftools.py:489: note:         def __iter__(self) -> Iterator[Buffer]+ hydpy/core/netcdftools.py:489: note:     Got:+ hydpy/core/netcdftools.py:489: note:         def __iter__(self) -> Iterator[int]+ hydpy/core/netcdftools.py:489: note:     Expected:+ hydpy/core/netcdftools.py:489: note:         def __iter__(self) -> Iterator[Buffer]+ hydpy/core/netcdftools.py:489: note:     Got:+ hydpy/core/netcdftools.py:489: note:         def __iter__(self) -> Iterator[int]- hydpy/core/itemtools.py:951: error: Argument 2 to "update_variable" of "ChangeItem" has incompatible type "float64"; expected "ndarray[tuple[int, ...], dtype[float64]]"  [arg-type]+ hydpy/core/itemtools.py:951: error: Argument 2 to "update_variable" of "ChangeItem" has incompatible type "float64"; expected "ndarray[tuple[Any, ...], dtype[float64]]"  [arg-type]- hydpy/core/itemtools.py:954: error: Argument 2 to "update_variable" of "ChangeItem" has incompatible type "float64"; expected "ndarray[tuple[int, ...], dtype[float64]]"  [arg-type]+ hydpy/core/itemtools.py:954: error: Argument 2 to "update_variable" of "ChangeItem" has incompatible type "float64"; expected "ndarray[tuple[Any, ...], dtype[float64]]"  [arg-type]- hydpy/auxs/statstools.py:298: error: Argument "sim" to "SimObs" has incompatible type "Series[Any]"; expected "ndarray[tuple[int, ...], dtype[float64]]"  [arg-type]+ hydpy/auxs/statstools.py:298: error: Argument "sim" to "SimObs" has incompatible type "Series[Any]"; expected "ndarray[tuple[Any, ...], dtype[float64]]"  [arg-type]- hydpy/auxs/statstools.py:298: error: Argument "obs" to "SimObs" has incompatible type "Series[Any]"; expected "ndarray[tuple[int, ...], dtype[float64]]"  [arg-type]+ hydpy/auxs/statstools.py:298: error: Argument "obs" to "SimObs" has incompatible type "Series[Any]"; expected "ndarray[tuple[Any, ...], dtype[float64]]"  [arg-type]- hydpy/auxs/ppolytools.py:256: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, signedinteger[_64Bit]], dtype[float64]]", variable has type "Sequence[Sequence[float] | ndarray[tuple[int, ...], dtype[float64]]] | ndarray[tuple[int, ...], dtype[float64]]")  [assignment]- hydpy/auxs/ppolytools.py:423: error: No overload variant of "CubicHermiteSpline" matches argument types "ndarray[tuple[int, ...], dtype[float64]]", "ndarray[tuple[int, ...], dtype[float64]]"  [call-overload]+ hydpy/auxs/ppolytools.py:423: error: No overload variant of "CubicHermiteSpline" matches argument types "ndarray[tuple[Any, ...], dtype[float64]]", "ndarray[tuple[Any, ...], dtype[float64]]"  [call-overload]- hydpy/auxs/ppolytools.py:427: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[signedinteger[_64Bit]]]", variable has type "ndarray[tuple[int], dtype[signedinteger[_64Bit]]]")  [assignment]- hydpy/auxs/armatools.py:258: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[Any]]", variable has type "ndarray[tuple[int], dtype[float64]]")  [assignment]- hydpy/models/rconc/rconc_control.py:422: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], Any]", variable has type "ndarray[tuple[int], dtype[floating[Any]]]")  [assignment]freqtrade (https://github.com/freqtrade/freqtrade)- freqtrade/data/metrics.py:122: error: Invalid index type "tuple[Hashable, str]" for "_LocIndexerFrame[DataFrame]"; expected type "Series[builtins.bool] | ndarray[tuple[int, ...], dtype[numpy.bool[builtins.bool]]] | list[builtins.bool] | str | str_ | <9 more items>"  [index]+ freqtrade/data/metrics.py:122: error: Invalid index type "tuple[Hashable, str]" for "_LocIndexerFrame[DataFrame]"; expected type "Series[builtins.bool] | ndarray[tuple[Any, ...], dtype[numpy.bool[builtins.bool]]] | list[builtins.bool] | str | str_ | <9 more items>"  [index]- freqtrade/data/entryexitanalysis.py:59: error: Invalid index type "tuple[Hashable, str]" for "_LocIndexerFrame[DataFrame]"; expected type "Series[builtins.bool] | ndarray[tuple[int, ...], dtype[numpy.bool[builtins.bool]]] | list[builtins.bool] | str | str_ | <9 more items>"  [index]+ freqtrade/data/entryexitanalysis.py:59: error: Invalid index type "tuple[Hashable, str]" for "_LocIndexerFrame[DataFrame]"; expected type "Series[builtins.bool] | ndarray[tuple[Any, ...], dtype[numpy.bool[builtins.bool]]] | list[builtins.bool] | str | str_ | <9 more items>"  [index]- freqtrade/data/entryexitanalysis.py:60: error: Invalid index type "tuple[Hashable, str]" for "_LocIndexerFrame[DataFrame]"; expected type "Series[builtins.bool] | ndarray[tuple[int, ...], dtype[numpy.bool[builtins.bool]]] | list[builtins.bool] | str | str_ | <9 more items>"  [index]+ freqtrade/data/entryexitanalysis.py:60: error: Invalid index type "tuple[Hashable, str]" for "_LocIndexerFrame[DataFrame]"; expected type "Series[builtins.bool] | ndarray[tuple[Any, ...], dtype[numpy.bool[builtins.bool]]] | list[builtins.bool] | str | str_ | <9 more items>"  [index]- freqtrade/data/entryexitanalysis.py:60: error: Invalid index type "tuple[Hashable, str]" for "_LocIndexerFrame[DataFrame]"; expected type "slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | <6 more items>"  [index]+ freqtrade/data/entryexitanalysis.py:60: error: Invalid index type "tuple[Hashable, str]" for "_LocIndexerFrame[DataFrame]"; expected type "slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | <6 more items>"  [index]- freqtrade/plot/plotting.py:187: error: Invalid index type "tuple[datetime, str]" for "_LocIndexerFrame[DataFrame]"; expected type "slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | <6 more items>"  [index]+ freqtrade/plot/plotting.py:187: error: Invalid index type "tuple[datetime, str]" for "_LocIndexerFrame[DataFrame]"; expected type "slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | <6 more items>"  [index]- freqtrade/plot/plotting.py:188: error: Invalid index type "tuple[datetime, str]" for "_LocIndexerFrame[DataFrame]"; expected type "slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | <6 more items>"  [index]+ freqtrade/plot/plotting.py:188: error: Invalid index type "tuple[datetime, str]" for "_LocIndexerFrame[DataFrame]"; expected type "slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | <6 more items>"  [index]- freqtrade/freqai/data_drawer.py:363: error: Invalid index type "tuple[int, int | slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[numpy.bool[builtins.bool]]]]" for "_iLocIndexerFrame[DataFrame]"; expected type "int | slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | tuple[int, int] | tuple[slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], int] | tuple[slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]] | tuple[int, slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]]"  [index]+ freqtrade/freqai/data_drawer.py:363: error: Invalid index type "tuple[int, int | slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[numpy.bool[builtins.bool]]]]" for "_iLocIndexerFrame[DataFrame]"; expected type "int | slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | tuple[int, int] | tuple[slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], int] | tuple[slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]] | tuple[int, slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]]"  [index]- freqtrade/freqai/data_drawer.py:363: error: Invalid index type "tuple[int, int | slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[numpy.bool[builtins.bool]]]]" for "_iLocIndexerFrame[DataFrame]"; expected type "tuple[int, int]"  [index]+ freqtrade/freqai/data_drawer.py:363: error: Invalid index type "tuple[int, int | slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[numpy.bool[builtins.bool]]]]" for "_iLocIndexerFrame[DataFrame]"; expected type "tuple[int, int]"  [index]- freqtrade/freqai/data_drawer.py:368: error: Invalid index type "tuple[int, int | slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[numpy.bool[builtins.bool]]]]" for "_iLocIndexerFrame[DataFrame]"; expected type "int | slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | tuple[int, int] | tuple[slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], int] | tuple[slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]] | tuple[int, slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]]"  [index]+ freqtrade/freqai/data_drawer.py:368: error: Invalid index type "tuple[int, int | slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[numpy.bool[builtins.bool]]]]" for "_iLocIndexerFrame[DataFrame]"; expected type "int | slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | tuple[int, int] | tuple[slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], int] | tuple[slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]] | tuple[int, slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]]"  [index]- freqtrade/freqai/data_drawer.py:369: error: Invalid index type "tuple[int, int | slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[numpy.bool[builtins.bool]]]]" for "_iLocIndexerFrame[DataFrame]"; expected type "int | slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | tuple[int, int] | tuple[slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], int] | tuple[slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]] | tuple[int, slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]]"  [index]+ freqtrade/freqai/data_drawer.py:369: error: Invalid index type "tuple[int, int | slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[numpy.bool[builtins.bool]]]]" for "_iLocIndexerFrame[DataFrame]"; expected type "int | slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | tuple[int, int] | tuple[slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], int] | tuple[slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]] | tuple[int, slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]]"  [index]- freqtrade/freqai/data_drawer.py:373: error: Invalid index type "tuple[int, int | slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[numpy.bool[builtins.bool]]]]" for "_iLocIndexerFrame[DataFrame]"; expected type "int | slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | tuple[int, int] | tuple[slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], int] | tuple[slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]] | tuple[int, slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]]"  [index]+ freqtrade/freqai/data_drawer.py:373: error: Invalid index type "tuple[int, int | slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[numpy.bool[builtins.bool]]]]" for "_iLocIndexerFrame[DataFrame]"; expected type "int | slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | tuple[int, int] | tuple[slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], int] | tuple[slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]] | tuple[int, slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]]"  [index]- freqtrade/freqai/data_drawer.py:376: error: Invalid index type "tuple[int, int | slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[numpy.bool[builtins.bool]]]]" for "_iLocIndexerFrame[DataFrame]"; expected type "int | slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | tuple[int, int] | tuple[slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], int] | tuple[slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]] | tuple[int, slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]]"  [index]+ freqtrade/freqai/data_drawer.py:376: error: Invalid index type "tuple[int, int | slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[numpy.bool[builtins.bool]]]]" for "_iLocIndexerFrame[DataFrame]"; expected type "int | slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | tuple[int, int] | tuple[slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], int] | tuple[slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]] | tuple[int, slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]]"  [index]- freqtrade/freqai/data_drawer.py:383: error: Invalid index type "tuple[int, int | slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[numpy.bool[builtins.bool]]]]" for "_iLocIndexerFrame[DataFrame]"; expected type "int | slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | tuple[int, int] | tuple[slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], int] | tuple[slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]] | tuple[int, slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]]"  [index]+ freqtrade/freqai/data_drawer.py:383: error: Invalid index type "tuple[int, int | slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[numpy.bool[builtins.bool]]]]" for "_iLocIndexerFrame[DataFrame]"; expected type "int | slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | tuple[int, int] | tuple[slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], int] | tuple[slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]] | tuple[int, slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]]"  [index]- freqtrade/freqai/data_drawer.py:387: error: Invalid index type "tuple[int, int | slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[numpy.bool[builtins.bool]]]]" for "_iLocIndexerFrame[DataFrame]"; expected type "int | slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | tuple[int, int] | tuple[slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], int] | tuple[slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]] | tuple[int, slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]]"  [index]+ freqtrade/freqai/data_drawer.py:387: error: Invalid index type "tuple[int, int | slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[numpy.bool[builtins.bool]]]]" for "_iLocIndexerFrame[DataFrame]"; expected type "int | slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | tuple[int, int] | tuple[slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], int] | tuple[slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]] | tuple[int, slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]]"  [index]- freqtrade/freqai/data_drawer.py:387: error: Invalid index type "tuple[int, int | slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[numpy.bool[builtins.bool]]]]" for "_iLocIndexerFrame[DataFrame]"; expected type "tuple[int, int]"  [index]+ freqtrade/freqai/data_drawer.py:387: error: Invalid index type "tuple[int, int | slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[numpy.bool[builtins.bool]]]]" for "_iLocIndexerFrame[DataFrame]"; expected type "tuple[int, int]"  [index]... (truncated 28 lines) ...AutoSplit (https://github.com/Toufool/AutoSplit)- src/capture_method/XcbCaptureMethod.py:58:17: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[Any]]", variable has type "Image")  [assignment]+ src/capture_method/XcbCaptureMethod.py:58:17: error: Incompatible types in assignment (expression has type "ndarray[tuple[Any, ...], dtype[Any]]", variable has type "Image")  [assignment]- src/capture_method/ScrotCaptureMethod.py:48:17: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[Any]]", variable has type "Image")  [assignment]+ src/capture_method/ScrotCaptureMethod.py:48:17: error: Incompatible types in assignment (expression has type "ndarray[tuple[Any, ...], dtype[Any]]", variable has type "Image")  [assignment]xarray (https://github.com/pydata/xarray)- xarray/core/indexing.py:1152: error: Argument 1 to "append" of "list" has incompatible type "ndarray[tuple[int, ...], dtype[Any]]"; expected "slice[Any, Any, Any]"  [arg-type]+ xarray/core/indexing.py:1152: error: Argument 1 to "append" of "list" has incompatible type "ndarray[tuple[Any, ...], dtype[Any]]"; expected "slice[Any, Any, Any]"  [arg-type]- xarray/tests/test_parallelcompat.py:93: error: Return type "tuple[ndarray[tuple[int, ...], dtype[Any]], ...]" of "compute" incompatible with return type "tuple[ndarray[Any, _DType_co], ...]" in supertype "ChunkManagerEntrypoint"  [override]+ xarray/tests/test_parallelcompat.py:93: error: Return type "tuple[ndarray[tuple[Any, ...], dtype[Any]], ...]" of "compute" incompatible with return type "tuple[ndarray[Any, _DType_co], ...]" in supertype "ChunkManagerEntrypoint"  [override]- xarray/tests/test_dataarray.py:3810: error: Argument 1 to "len" has incompatible type "ndarray[tuple[int, ...], dtype[numpy.bool[builtins.bool]]] | numpy.bool[builtins.bool]"; expected "Sized"  [arg-type]+ xarray/tests/test_dataarray.py:3810: error: Argument 1 to "len" has incompatible type "ndarray[tuple[Any, ...], dtype[numpy.bool[builtins.bool]]] | numpy.bool[builtins.bool]"; expected "Sized"  [arg-type]dedupe (https://github.com/dedupeio/dedupe)+ dedupe/clustering.py:59: error: Incompatible types in assignment (expression has type "signedinteger[_64Bit]", variable has type "int")  [assignment]+ dedupe/labeler.py:199: error: Generator has incompatible item type "tuple[int | str, int | str]"; expected "tuple[int, int] | tuple[str, str]"  [misc]- dedupe/datamodel.py:122: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[float64]]", variable has type "ndarray[tuple[int, int], dtype[Any]]")  [assignment]- dedupe/convenience.py:43: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[Any]]", variable has type "ndarray[tuple[int], dtype[signedinteger[Any]]]")  [assignment]- dedupe/convenience.py:73: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[signedinteger[Any]]]", variable has type "ndarray[tuple[int], dtype[signedinteger[Any]]]")  [assignment]+ dedupe/convenience.py:99: error: "signedinteger[_64Bit]" object is not iterable  [misc]+ dedupe/convenience.py:99: error: Cannot determine type of "p"  [has-type]+ dedupe/convenience.py:99: error: Cannot determine type of "q"  [has-type]optuna (https://github.com/optuna/optuna)- optuna/_hypervolume/hssp.py:108: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[signedinteger[Any]]]", variable has type "ndarray[tuple[int], dtype[signedinteger[Any]]]")  [assignment]- optuna/_hypervolume/box_decomposition.py:92: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[Any]]", variable has type "ndarray[tuple[int, int, int], dtype[Any]]")  [assignment]- tests/hypervolume_tests/test_wfg.py:26: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[Any]]", variable has type "ndarray[tuple[int, int], dtype[Any]]")  [assignment]pandas (https://github.com/pandas-dev/pandas)+ pandas/core/arrays/arrow/_arrow_utils.py:47: error: Unused "type: ignore" comment  [unused-ignore]+ pandas/core/_numba/executor.py:90: error: Incompatible redefinition (redefinition with type "Callable[[ndarray[tuple[Any, ...], dtype[Any]], ndarray[tuple[Any, ...], dtype[Any]], ndarray[tuple[Any, ...], dtype[Any]], int, VarArg(Any)], Any]", original type "Callable[[ndarray[tuple[Any, ...], dtype[Any]], ndarray[tuple[Any, ...], dtype[Any]], int, int, VarArg(Any)], Any]")  [misc]- pandas/core/window/numba_.py:238: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[Any]]", variable has type "ndarray[tuple[int, int], dtype[float64]]")  [assignment]- pandas/core/_numba/executor.py:90: error: Incompatible redefinition (redefinition with type "Callable[[ndarray[tuple[int, ...], dtype[Any]], ndarray[tuple[int, ...], dtype[Any]], ndarray[tuple[int, ...], dtype[Any]], int, VarArg(Any)], Any]", original type "Callable[[ndarray[tuple[int, ...], dtype[Any]], ndarray[tuple[int, ...], dtype[Any]], int, int, VarArg(Any)], Any]")  [misc]+ pandas/core/array_algos/quantile.py:105: error: Unused "type: ignore" comment  [unused-ignore]- pandas/core/construction.py:687: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[Any]]", variable has type "ndarray[tuple[int], dtype[Any]]")  [assignment]- pandas/core/construction.py:689: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[Any]]", variable has type "ndarray[tuple[int], dtype[Any]]")  [assignment]+ pandas/tseries/frequencies.py:274: error: List comprehension has incompatible type List[floating[_64Bit]]; expected List[int]  [misc]+ pandas/tseries/frequencies.py:279: error: List comprehension has incompatible type List[floating[_64Bit]]; expected List[int]  [misc]+ pandas/core/arrays/arrow/array.py:2543: error: Unused "type: ignore" comment  [unused-ignore]+ pandas/core/arrays/datetimelike.py:1293: error: No overload variant of "__mul__" of "BaseOffset" matches argument type "signedinteger[_64Bit]"  [operator]+ pandas/core/arrays/datetimelike.py:1293: note: Possible overload variants:+ pandas/core/arrays/datetimelike.py:1293: note:     def __mul__(self, ndarray[tuple[Any, ...], dtype[Any]], /) -> ndarray[tuple[Any, ...], dtype[Any]]+ pandas/core/arrays/datetimelike.py:1293: note:     def __mul__(self, int, /) -> BaseOffset- pandas/core/arrays/categorical.py:1858: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[Any]]", variable has type "ndarray[tuple[int], dtype[signedinteger[Any]]]")  [assignment]+ pandas/core/arrays/categorical.py:1856: error: Unused "type: ignore" comment  [unused-ignore]+ pandas/io/stata.py:1448: error: Invalid index type "unsignedinteger[_8Bit]" for "dict[int, int]"; expected type "int"  [index]+ pandas/io/stata.py:1450: error: Argument 1 to "append" of "list" has incompatible type "unsignedinteger[_8Bit]"; expected "int"  [arg-type]- pandas/core/frame.py:11368: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[float64]]", variable has type "ndarray[tuple[int, int], dtype[float64]]")  [assignment]- pandas/core/reshape/concat.py:936: error: Generator has incompatible item type "ndarray[tuple[int, ...], dtype[Any]]"; expected "ndarray[tuple[int], dtype[Any]]"  [misc]- pandas/core/reshape/concat.py:940: error: Argument 1 to "append" of "list" has incompatible type "ndarray[tuple[int, ...], dtype[Any]]"; expected "ndarray[tuple[int], dtype[Any]]"  [arg-type]+ pandas/core/reshape/encoding.py:362: error: Unused "type: ignore" comment  [unused-ignore]+ pandas/core/internals/managers.py:1527: error: "BlockPlacement" has no attribute "increment_above"  [attr-defined]+ pandas/core/indexers/objects.py:134: error: Unused "type: ignore" comment  [unused-ignore]+ pandas/core/indexers/objects.py:135: error: Unused "type: ignore" comment  [unused-ignore]+ pandas/core/indexers/objects.py:405: error: Unused "type: ignore" comment  [unused-ignore]+ pandas/core/indexers/objects.py:491: error: Unused "type: ignore" comment  [unused-ignore]+ pandas/core/groupby/groupby.py:1888: error: Unused "type: ignore" comment  [unused-ignore]+ pandas/io/formats/style_render.py:1243: error: Invalid index type "tuple[signedinteger[_32Bit | _64Bit], signedinteger[_32Bit | _64Bit]]" for "defaultdict[tuple[int, int], Callable[[Any], str]]"; expected type "tuple[int, int]"  [index]scipy (https://github.com/scipy/scipy)+ scipy/optimize/_isotonic.py:147: error: Unused "type: ignore" comment  [unused-ignore]- scipy/spatial/tests/test_spherical_voronoi.py:255: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[Any]]", variable has type "list[ndarray[tuple[int, ...], dtype[Any]]]")  [assignment]+ scipy/spatial/tests/test_spherical_voronoi.py:255: error: Incompatible types in assignment (expression has type "ndarray[tuple[Any, ...], dtype[Any]]", variable has type "list[ndarray[tuple[Any, ...], dtype[Any]]]")  [assignment]spark (https://github.com/apache/spark)- python/pyspark/sql/pandas/types.py:633: error: Argument "ambiguous" to "tz_localize" of "_DatetimeLikeNoTZMethods" has incompatible type "Literal[False]"; expected "Literal['raise', 'infer', 'NaT'] | ndarray[tuple[int, ...], dtype[numpy.bool[builtins.bool]]]"  [arg-type]+ python/pyspark/sql/pandas/types.py:633: error: Argument "ambiguous" to "tz_localize" of "_DatetimeLikeNoTZMethods" has incompatible type "Literal[False]"; expected "Literal['raise', 'infer', 'NaT'] | ndarray[tuple[Any, ...], dtype[numpy.bool[builtins.bool]]]"  [arg-type]+ python/pyspark/sql/pandas/conversion.py:621: error: Argument 1 to "len" has incompatible type "dtype[Any]"; expected "Sized"  [arg-type]+ python/pyspark/sql/pandas/conversion.py:627: error: Incompatible types in assignment (expression has type "str", variable has type "dtype[Any]")  [assignment]+ python/pyspark/sql/pandas/conversion.py:629: error: Value of type "tuple[str, ...] | None" is not indexable  [index]- python/pyspark/pandas/namespace.py:1139: note:     def [IntStrT: (int, str)] read_excel(io: str | PathLike[str] | ReadBuffer[bytes] | ExcelFile | Any | Any | Any | Any, sheet_name: list[IntStrT], *, header: int | Sequence[int] | None = ..., names: MutableSequence[Any] | ndarray[tuple[int, ...], dtype[Any]] | tuple[Any, ...] | range | None = ..., index_col: int | Sequence[int] | str | None = ..., usecols: str | SequenceNotStr[Hashable] | range | ExtensionArray | ndarray[Any, Any] | Index[Any] | Series[Any] | Callable[[Any], bool] | None = ..., dtype: str | ExtensionDtype | str | dtype[generic[Any]] | type[str] | type[complex] | type[bool] | type[object] | Mapping[str, str | ExtensionDtype | str | dtype[generic[Any]] | type[str] | type[complex] | type[bool] | type[object]] | None = ..., engine: Literal['xlrd', 'openpyxl', 'odf', 'pyxlsb', 'calamine'] | None = ..., converters: Mapping[int | str, Callable[[object], object]] | None = ..., true_values: Iterable[Hashable] | None = ..., false_values: Iterable[Hashable] | None = ..., skiprows: int | Sequence[int] | Callable[[object], bool] | None = ..., nrows: int | None = ..., na_values: Sequence[str] | dict[str | int, Sequence[str]] = ..., keep_default_na: bool = ..., na_filter: bool = ..., verbose: bool = ..., parse_dates: bool | Sequence[int] | Sequence[Sequence[str] | Sequence[int]] | dict[str, Sequence[int] | list[str]] = ..., date_format: dict[Hashable, str] | str | None = ..., thousands: str | None = ..., decimal: str = ..., comment: str | None = ..., skipfooter: int = ..., storage_options: dict[str, Any] | None = ..., dtype_backend: Literal['pyarrow', 'numpy_nullable'] | Literal[_NoDefault.no_default] = ...) -> dict[IntStrT, DataFrame]+ python/pyspark/pandas/namespace.py:1139: note:     def [IntStrT: (int, str)] read_excel(io: str | PathLike[str] | ReadBuffer[bytes] | ExcelFile | Any | Any | Any | Any, sheet_name: list[IntStrT], *, header: int | Sequence[int] | None = ..., names: MutableSequence[Any] | ndarray[tuple[Any, ...], dtype[Any]] | tuple[Any, ...] | range | None = ..., index_col: int | Sequence[int] | str | None = ..., usecols: str | SequenceNotStr[Hashable] | range | ExtensionArray | ndarray[Any, Any] | Index[Any] | Series[Any] | Callable[[Any], bool] | None = ..., dtype: str | ExtensionDtype | str | dtype[generic[Any]] | type[str] | type[complex] | type[bool] | type[object] | Mapping[str, str | ExtensionDtype | str | dtype[generic[Any]] | type[str] | type[complex] | type[bool] | type[object]] | None = ..., engine: Literal['xlrd', 'openpyxl', 'odf', 'pyxlsb', 'calamine'] | None = ..., converters: Mapping[int | str, Callable[[object], object]] | None = ..., true_values: Iterable[Hashable] | None = ..., false_values: Iterable[Hashable] | None = ..., skiprows: int | Sequence[int] | Callable[[object], bool] | None = ..., nrows: int | None = ..., na_values: Sequence[str] | dict[str | int, Sequence[str]] = ..., keep_default_na: bool = ..., na_filter: bool = ..., verbose: bool = ..., parse_dates: bool | Sequence[int] | Sequence[Sequence[str] | Sequence[int]] | dict[str, Sequence[int] | list[str]] = ..., date_format: dict[Hashable, str] | str | None = ..., thousands: str | None = ..., decimal: str = ..., comment: str | None = ..., skipfooter: int = ..., storage_options: dict[str, Any] | None = ..., dtype_backend: Literal['pyarrow', 'numpy_nullable'] | Literal[_NoDefault.no_default] = ...) -> dict[IntStrT, DataFrame]- python/pyspark/pandas/namespace.py:1139: note:     def read_excel(io: str | PathLike[str] | ReadBuffer[bytes] | ExcelFile | Any | Any | Any | Any, sheet_name: None, *, header: int | Sequence[int] | None = ..., names: MutableSequence[Any] | ndarray[tuple[int, ...], dtype[Any]] | tuple[Any, ...] | range | None = ..., index_col: int | Sequence[int] | str | None = ..., usecols: str | SequenceNotStr[Hashable] | range | ExtensionArray | ndarray[Any, Any] | Index[Any] | Series[Any] | Callable[[Any], bool] | None = ..., dtype: str | ExtensionDtype | str | dtype[generic[Any]] | type[str] | type[complex] | type[bool] | type[object] | Mapping[str, str | ExtensionDtype | str | dtype[generic[Any]] | type[str] | type[complex] | type[bool] | type[object]] | None = ..., engine: Literal['xlrd', 'openpyxl', 'odf', 'pyxlsb', 'calamine'] | None = ..., converters: Mapping[int | str, Callable[[object], object]] | None = ..., true_values: Iterable[Hashable] | None = ..., false_values: Iterable[Hashable] | None = ..., skiprows: int | Sequence[int] | Callable[[object], bool] | None = ..., nrows: int | None = ..., na_values: Sequence[str] | dict[str | int, Sequence[str]] = ..., keep_default_na: bool = ..., na_filter: bool = ..., verbose: bool = ..., parse_dates: bool | Sequence[int] | Sequence[Sequence[str] | Sequence[int]] | dict[str, Sequence[int] | list[str]] = ..., date_format: dict[Hashable, str] | str | None = ..., thousands: str | None = ..., decimal: str = ..., comment: str | None = ..., skipfooter: int = ..., storage_options: dict[str, Any] | None = ..., dtype_backend: Literal['pyarrow', 'numpy_nullable'] | Literal[_NoDefault.no_default] = ...) -> dict[str, DataFrame]+ python/pyspark/pandas/namespace.py:1139: note:     def read_excel(io: str | PathLike[str] | ReadBuffer[bytes] | ExcelFile | Any | Any | Any | Any, sheet_name: None, *, header: int | Sequence[int] | None = ..., names: MutableSequence[Any] | ndarray[tuple[Any, ...], dtype[Any]] | tuple[Any, ...] | range | None = ..., index_col: int | Sequence[int] | str | None = ..., usecols: str | SequenceNotStr[Hashable] | range | ExtensionArray | ndarray[Any, Any] | Index[Any] | Series[Any] | Callable[[Any], bool] | None = ..., dtype: str | ExtensionDtype | str | dtype[generic[Any]] | type[str] | type[complex] | type[bool] | type[object] | Mapping[str, str | ExtensionDtype | str | dtype[generic[Any]] | type[str] | type[complex] | type[bool] | type[object]] | None = ..., engine: Literal['xlrd', 'openpyxl', 'odf', 'pyxlsb', 'calamine'] | None = ..., converters: Mapping[int | str, Callable[[object], object]] | None = ..., true_values: Iterable[Hashable] | None = ..., false_values: Iterable[Hashable] | None = ..., skiprows: int | Sequence[int] | Callable[[object], bool] | None = ..., nrows: int | None = ..., na_values: Sequence[str] | dict[str | int, Sequence[str]] = ..., keep_default_na: bool = ..., na_filter: bool = ..., verbose: bool = ..., parse_dates: bool | Sequence[int] | Sequence[Sequence[str] | Sequence[int]] | dict[str, Sequence[int] | list[str]] = ..., date_format: dict[Hashable, str] | str | None = ..., thousands: str | None = ..., decimal: str = ..., comment: str | None = ..., skipfooter: int = ..., storage_options: dict[str, Any] | None = ..., dtype_backend: Literal['pyarrow', 'numpy_nullable'] | Literal[_NoDefault.no_default] = ...) -> dict[str, DataFrame]- python/pyspark/pandas/namespace.py:1139: note:     def read_excel(io: str | PathLike[str] | ReadBuffer[bytes] | ExcelFile | Any | Any | Any | Any, sheet_name: list[int | str], *, header: int | Sequence[int] | None = ..., names: MutableSequence[Any] | ndarray[tuple[int, ...], dtype[Any]] | tuple[Any, ...] | range | None = ..., index_col: int | Sequence[int] | str | None = ..., usecols: str | SequenceNotStr[Hashable] | range | ExtensionArray | ndarray[Any, Any] | Index[Any] | Series[Any] | Callable[[Any], bool] | None = ..., dtype: str | ExtensionDtype | str | dtype[generic[Any]] | type[str] | type[complex] | type[bool] | type[object] | Mapping[str, str | ExtensionDtype | str | dtype[generic[Any]] | type[str] | type[complex] | type[bool] | type[object]] | None = ..., engine: Literal['xlrd', 'openpyxl', 'odf', 'pyxlsb', 'calamine'] | None = ..., converters: Mapping[int | str, Callable[[object], object]] | None = ..., true_values: Iterable[Hashable] | None = ..., false_values: Iterable[Hashable] | None = ..., skiprows: int | Sequence[int] | Callable[[object], bool] | None = ..., nrows: int | None = ..., na_values: Sequence[str] | dict[str | int, Sequence[str]] = ..., keep_default_na: bool = ..., na_filter: bool = ..., verbose: bool = ..., parse_dates: bool | Sequence[int] | Sequence[Sequence[str] | Sequence[int]] | dict[str, Sequence[int] | list[str]] = ..., date_format: dict[Hashable, str] | str | None = ..., thousands: str | None = ..., decimal: str = ..., comment: str | None = ..., skipfooter: int = ..., storage_options: dict[str, Any] | None = ..., dtype_backend: Literal['pyarrow', 'numpy_nullable'] | Literal[_NoDefault.no_default] = ...) -> dict[int | str, DataFrame]+ python/pyspark/pandas/namespace.py:1139: note:     def read_excel(io: str | PathLike[str] | ReadBuffer[bytes] | ExcelFile | Any | Any | Any | Any, sheet_name: list[int | str], *, header: int | Sequence[int] | None = ..., names: MutableSequence[Any] | ndarray[tuple[Any, ...], dtype[Any]] | tuple[Any, ...] | range | None = ..., index_col: int | Sequence[int] | str | None = ..., usecols: str | SequenceNotStr[Hashable] | range | ExtensionArray | ndarray[Any, Any] | Index[Any] | Series[Any] | Callable[[Any], bool] | None = ..., dtype: str | ExtensionDtype | str | dtype[generic[Any]] | type[str] | type[complex] | type[bool] | type[object] | Mapping[str, str | ExtensionDtype | str | dtype[generic[Any]] | type[str] | type[complex] | type[bool] | type[object]] | None = ..., engine: Literal['xlrd', 'openpyxl', 'odf', 'pyxlsb', 'calamine'] | None = ..., converters: Mapping[int | str, Callable[[object], object]] | None = ..., true_values: Iterable[Hashable] | None = ..., false_values: Iterable[Hashable] | None = ..., skiprows: int | Sequence[int] | Callable[[object], bool] | None = ..., nrows: int | None = ..., na_values: Sequence[str] | dict[str | int, Sequence[str]] = ..., keep_default_na: bool = ..., na_filter: bool = ..., verbose: bool = ..., parse_dates: bool | Sequence[int] | Sequence[Sequence[str] | Sequence[int]] | dict[str, Sequence[int] | list[str]] = ..., date_format: dict[Hashable, str] | str | None = ..., thousands: str | None = ..., decimal: str = ..., comment: str | None = ..., skipfooter: int = ..., storage_options: dict[str, Any] | None = ..., dtype_backend: Literal['pyarrow', 'numpy_nullable'] | Literal[_NoDefault.no_default] = ...) -> dict[int | str, DataFrame]- python/pyspark/pandas/namespace.py:1139: note:     def read_excel(io: str | PathLike[str] | ReadBuffer[bytes] | ExcelFile | Any | Any | Any | Any, sheet_name: int | str = ..., *, header: int | Sequence[int] | None = ..., names: MutableSequence[Any] | ndarray[tuple[int, ...], dtype[Any]] | tuple[Any, ...] | range | None = ..., index_col: int | Sequence[int] | str | None = ..., usecols: str | SequenceNotStr[Hashable] | range | ExtensionArray | ndarray[Any, Any] | Index[Any] | Series[Any] | Callable[[Any], bool] | None = ..., dtype: str | ExtensionDtype | str | dtype[generic[Any]] | type[str] | type[complex] | type[bool] | type[object] | Mapping[str, str | ExtensionDtype | str | dtype[generic[Any]] | type[str] | type[complex] | type[bool] | type[object]] | None = ..., engine: Literal['xlrd', 'openpyxl', 'odf', 'pyxlsb', 'calamine'] | None = ..., converters: Mapping[int | str, Callable[[object], object]] | None = ..., true_values: Iterable[Hashable] | None = ..., false_values: Iterable[Hashable] | None = ..., skiprows: int | Sequence[int] | Callable[[object], bool] | None = ..., nrows: int | None = ..., na_values: Sequence[str] | dict[str | int, Sequence[str]] = ..., keep_default_na: bool = ..., na_filter: bool = ..., verbose: bool = ..., parse_dates: bool | Sequence[int] | Sequence[Sequence[str] | Sequence[int]] | dict[str, Sequence[int] | list[str]] = ..., date_format: dict[Hashable, str] | str | None = ..., thousands: str | None = ..., decimal: str = ..., comment: str | None = ..., skipfooter: int = ..., storage_options: dict[str, Any] | None = ..., dtype_backend: Literal['pyarrow', 'numpy_nullable'] | Literal[_NoDefault.no_default] = ...) -> DataFrame+ python/pyspark/pandas/namespace.py:1139: note:     def read_excel(io: str | PathLike[str] | ReadBuffer[bytes] | ExcelFile | Any | Any | Any | Any, sheet_name: int | str = ..., *, header: int | Sequence[int] | None = ..., names: MutableSequence[Any] | ndarray[tuple[Any, ...], dtype[Any]] | tuple[Any, ...] | range | None = ..., index_col: int | Sequence[int] | str | None = ..., usecols: str | SequenceNotStr[Hashable] | range | ExtensionArray | ndarray[Any, Any] | Index[Any] | Series[Any] | Callable[[Any], bool] | None = ..., dtype: str | ExtensionDtype | str | dtype[generic[Any]] | type[str] | type[complex] | type[bool] | type[object] | Mapping[str, str | ExtensionDtype | str | dtype[generic[Any]] | type[str] | type[complex] | type[bool] | type[object]] | None = ..., engine: Literal['xlrd', 'openpyxl', 'odf', 'pyxlsb', 'calamine'] | None = ..., converters: Mapping[int | str, Callable[[object], object]] | None = ..., true_values: Iterable[Hashable] | None = ..., false_values: Iterable[Hashable] | None = ..., skiprows: int | Sequence[int] | Callable[[object], bool] | None = ..., nrows: int | None = ..., na_values: Sequence[str] | dict[str | int, Sequence[str]] = ..., keep_default_na: bool = ..., na_filter: bool = ..., verbose: bool = ..., parse_dates: bool | Sequence[int] | Sequence[Sequence[str] | Sequence[int]] | dict[str, Sequence[int] | list[str]] = ..., date_format: dict[Hashable, str] | str | None = ..., thousands: str | None = ..., decimal: str = ..., comment: str | None = ..., skipfooter: int = ..., storage_options: dict[str, Any] | None = ..., dtype_backend: Literal['pyarrow', 'numpy_nullable'] | Literal[_NoDefault.no_default] = ...) -> DataFrame- python/pyspark/ml/linalg/__init__.py:1145: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[Any]]", variable has type "ndarray[tuple[int], dtype[Any]]")  [assignment]- python/pyspark/ml/linalg/__init__.py:1149: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[Any]]", variable has type "ndarray[tuple[int], dtype[Any]]")  [assignment]- python/pyspark/ml/functions.py:244: note:     def [_ScalarT: generic[Any]] vstack(tup: Sequence[_SupportsArray[dtype[_ScalarT]] | _NestedSequence[_SupportsArray[dtype[_ScalarT]]]], *, dtype: None = ..., casting: Literal['no', 'equiv', 'safe', 'same_kind', 'unsafe'] = ...) -> ndarray[tuple[int, ...], dtype[_ScalarT]]+ python/pyspark/ml/functions.py:244: note:     def [_ScalarT: generic[Any]] vstack(tup: Sequence[_SupportsArray[dtype[_ScalarT]] | _NestedSequence[_SupportsArray[dtype[_ScalarT]]]], *, dtype: None = ..., casting: Literal['no', 'equiv', 'safe', 'same_kind', 'unsafe'] = ...) -> ndarray[tuple[Any, ...], dtype[_ScalarT]]- python/pyspark/ml/functions.py:244: note:     def [_ScalarT: generic[Any]] vstack(tup: Sequence[Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | complex | bytes | str | _NestedSequence[complex | bytes | str]], *, dtype: type[_ScalarT] | dtype[_ScalarT] | _SupportsDType[dtype[_ScalarT]], casting: Literal['no', 'equiv', 'safe', 'same_kind', 'unsafe'] = ...) -> ndarray[tuple[int, ...], dtype[_ScalarT]]+ python/pyspark/ml/functions.py:244: note:     def [_ScalarT: generic[Any]] vstack(tup: Sequence[Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | complex | bytes | str | _NestedSequence[complex | bytes | str]], *, dtype: type[_ScalarT] | dtype[_ScalarT] | _SupportsDType[dtype[_ScalarT]], casting: Literal['no', 'equiv', 'safe', 'same_kind', 'unsafe'] = ...) -> ndarray[tuple[Any, ...], dtype[_ScalarT]]... (truncated 4 lines) ...static-frame (https://github.com/static-frame/static-frame)+ static_frame/core/util.py:1977: error: Unused "type: ignore" comment  [unused-ignore]+ static_frame/core/rank.py:79: error: Unused "type: ignore" comment  [unused-ignore]+ static_frame/core/rank.py:93: error: Unused "type: ignore" comment  [unused-ignore]+ static_frame/core/rank.py:96: error: Unused "type: ignore" comment  [unused-ignore]+ static_frame/core/loc_map.py:413: error: Incompatible types in assignment (expression has type "unsignedinteger[_64Bit]", variable has type "ndarray[tuple[Any, ...], dtype[unsignedinteger[_64Bit]]]")  [assignment]- static_frame/core/frame.py:7524: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[Any]]", variable has type "ndarray[tuple[int], dtype[Any]]")  [assignment]scipy-stubs (https://github.com/scipy/scipy-stubs)- tests/optimize/minimize.pyi:13: error: No overload variant of "minimize" matches argument types "Callable[[ndarray[tuple[int, ...], dtype[floating[_16Bit] | floating[_32Bit] | float64]], ndarray[tuple[int, ...], dtype[floating[_16Bit] | floating[_32Bit] | float64]]], float64]", "int", "tuple[ndarray[tuple[int, ...], dtype[Any]]]", "str", "dict[str, float]"  [call-overload]+ tests/optimize/minimize.pyi:13: error: No overload variant of "minimize" matches argument types "Callable[[ndarray[tuple[Any, ...], dtype[floating[_16Bit] | floating[_32Bit] | float64]], ndarray[tuple[Any, ...], dtype[floating[_16Bit] | floating[_32Bit] | float64]]], float64]", "int", "tuple[ndarray[tuple[Any, ...], dtype[Any]]]", "str", "dict[str, float]"  [call-overload]pandera (https://github.com/pandera-dev/pandera)- pandera/engines/pandas_engine.py:1384: error: Invalid index type "Series[builtins.bool] | DataFrame" for "Series[Any]"; expected type "list[str] | Index[Any] | Series[Any] | slice[Any, Any, Any] | Series[builtins.bool] | ndarray[tuple[int, ...], dtype[numpy.bool[builtins.bool]]] | list[builtins.bool] | tuple[Hashable | slice[Any, Any, Any], ...]"  [index]+ pandera/engines/pandas_engine.py:1384: error: Invalid index type "Series[builtins.bool] | DataFrame" for "Series[Any]"; expected type "list[str] | Index[Any] | Series[Any] | slice[Any, Any, Any] | Series[builtins.bool] | ndarray[tuple[Any, ...], dtype[numpy.bool[builtins.bool]]] | list[builtins.bool] | tuple[Hashable | slice[Any, Any, Any], ...]"  [index]- pandera/strategies/pandas_strategies.py:71: note:     def mask(self, cond: Series[Any] | Series[bool] | ndarray[tuple[int, ...], dtype[Any]] | Callable[[Series[Any]], Series[bool]] | Callable[[Any], bool], other: str | bytes | date | datetime | timedelta | <12 more items> | None = ..., *, inplace: Literal[True], axis: Literal['index', 0] | None = ..., level: Hashable | int | None = ...) -> None+ pandera/strategies/pandas_strategies.py:71: note:     def mask(self, cond: Series[Any] | Series[bool] | ndarray[tuple[Any, ...], dtype[Any]] | Callable[[Series[Any]], Series[bool]] | Callable[[Any], bool], other: str | bytes | date | datetime | timedelta | <12 more items> | None = ..., *, inplace: Literal[True], axis: Literal['index', 0] | None = ..., level: Hashable | int | None = ...) -> None... (truncated 16 lines) ...```

@jorenham
Copy link
MemberAuthor

@mroeschke here's another one that's causing some new mypy errors in pandas. Are you seeing anything you don't like?

@mroeschke
Copy link
Contributor

Looks OK to me

jorenham reacted with thumbs up emoji

@jorenham
Copy link
MemberAuthor

@MarcoGorelli this also touches a bit ofnp.ma; mind taking a look?

MarcoGorelli reacted with eyes emoji

@jorenhamjorenham added this to the2.3.0 release milestoneMay 17, 2025
Copy link
Member

@MarcoGorelliMarcoGorelli left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others.Learn more.

nice, thanks for the ping

jorenham reacted with thumbs up emoji
@charrischarris merged commit3c76265 intonumpy:mainMay 19, 2025
76 checks passed
@charris
Copy link
Member

Let's give it a shot. Thanks Joren.

jorenham reacted with thumbs up emoji

Sign up for freeto join this conversation on GitHub. Already have an account?Sign in to comment
Reviewers

@MarcoGorelliMarcoGorelliMarcoGorelli left review comments

Assignees
No one assigned
Projects
None yet
Milestone
2.3.0 release
Development

Successfully merging this pull request may close these issues.

4 participants
@jorenham@mroeschke@charris@MarcoGorelli

[8]ページ先頭

©2009-2025 Movatter.jp