|
| 1 | +nagcpp::opt::handle_solve_lp_ipm Example |
| 2 | + |
| 3 | + ---------------------------------------------- |
| 4 | + E04MT, Interior point method for LP problems |
| 5 | + ---------------------------------------------- |
| 6 | + |
| 7 | + Begin of Options |
| 8 | + Print File = 6 * d |
| 9 | + Print Level = 2 * d |
| 10 | + Print Options = Yes * d |
| 11 | + Print Solution = All * U |
| 12 | + Monitoring File = -1 * d |
| 13 | + Monitoring Level = 4 * d |
| 14 | + Lpipm Monitor Frequency = 1 * U |
| 15 | + |
| 16 | + Infinite Bound Size = 1.00000E+20 * d |
| 17 | + Task = Minimize * d |
| 18 | + Stats Time = No * d |
| 19 | + |
| 20 | + Lp Presolve = Yes * d |
| 21 | + Lpipm Algorithm = Primal-dual * d |
| 22 | + Lpipm Centrality Correctors = -6 * U |
| 23 | + Lpipm Iteration Limit = 100 * d |
| 24 | + Lpipm Max Iterative Refinement= 5 * d |
| 25 | + Lpipm Scaling = Arithmetic * d |
| 26 | + Lpipm Stop Tolerance = 1.00000E-10 * U |
| 27 | + Lpipm Stop Tolerance 2 = 2.67452E-10 * d |
| 28 | + Lpipm System Formulation = Auto * d |
| 29 | + End of Options |
| 30 | + |
| 31 | + Problem Statistics |
| 32 | + No of variables 7 |
| 33 | + free (unconstrained) 0 |
| 34 | + bounded 7 |
| 35 | + No of lin. constraints 7 |
| 36 | + nonzeroes 41 |
| 37 | + Objective function Linear |
| 38 | + |
| 39 | + Presolved Problem Measures |
| 40 | + No of variables 13 |
| 41 | + free (unconstrained) 0 |
| 42 | + No of lin. constraints 7 |
| 43 | + nonzeroes 47 |
| 44 | + |
| 45 | + |
| 46 | + ------------------------------------------------------------------------------ |
| 47 | + it| pobj | dobj | optim | feas | compl | mu | mcc | I |
| 48 | + ------------------------------------------------------------------------------ |
| 49 | + 0 -7.86591E-02 1.71637E-02 1.27E+00 1.06E+00 8.89E-02 1.5E-01 |
| 50 | + 1 5.74135E-03 -2.24369E-02 5.25E-16 1.75E-01 2.25E-02 2.8E-02 0 |
| 51 | + 2 1.96803E-02 1.37067E-02 3.92E-16 2.28E-02 2.91E-03 3.4E-03 0 |
| 52 | + 3 2.15232E-02 1.96162E-02 1.63E-15 9.24E-03 1.44E-03 1.7E-03 0 |
| 53 | + 4 2.30321E-02 2.28676E-02 1.94E-15 2.21E-03 2.97E-04 3.4E-04 0 |
| 54 | + 5 2.35658E-02 2.35803E-02 1.56E-15 1.02E-04 8.41E-06 9.6E-06 0 |
| 55 | + 6 2.35965E-02 2.35965E-02 1.22E-15 7.02E-08 6.35E-09 7.2E-09 0 |
| 56 | +Iteration 7 |
| 57 | +monit() reports good approximate solution (tol = 1.2e-08): |
| 58 | + 7 2.35965E-02 2.35965E-02 1.04E-15 3.52E-11 3.18E-12 3.6E-12 0 |
| 59 | + ------------------------------------------------------------------------------ |
| 60 | + Status: converged, an optimal solution found |
| 61 | + ------------------------------------------------------------------------------ |
| 62 | + Final primal objective value 2.359648E-02 |
| 63 | + Final dual objective value 2.359648E-02 |
| 64 | + Absolute primal infeasibility 3.224317E-15 |
| 65 | + Relative primal infeasibility 3.518606E-11 |
| 66 | + Absolute dual infeasibility 5.084352E-11 |
| 67 | + Relative dual infeasibility 1.044506E-15 |
| 68 | + Absolute complementarity gap 2.685778E-11 |
| 69 | + Relative complementarity gap 3.175366E-12 |
| 70 | + Iterations 7 |
| 71 | + |
| 72 | + Primal variables: |
| 73 | + idx Lower bound Value Upper bound |
| 74 | + 1 -1.00000E-02 -1.00000E-02 1.00000E-02 |
| 75 | + 2 -1.00000E-01 -1.00000E-01 1.50000E-01 |
| 76 | + 3 -1.00000E-02 3.00000E-02 3.00000E-02 |
| 77 | + 4 -4.00000E-02 2.00000E-02 2.00000E-02 |
| 78 | + 5 -1.00000E-01 -6.74853E-02 5.00000E-02 |
| 79 | + 6 -1.00000E-02 -2.28013E-03 inf |
| 80 | + 7 -1.00000E-02 -2.34528E-04 inf |
| 81 | + |
| 82 | + Box bounds dual variables: |
| 83 | + idx Lower bound Value Upper bound Value |
| 84 | + 1 -1.00000E-02 3.30098E-01 1.00000E-02 0.00000E+00 |
| 85 | + 2 -1.00000E-01 1.43844E-02 1.50000E-01 0.00000E+00 |
| 86 | + 3 -1.00000E-02 0.00000E+00 3.00000E-02 9.09967E-02 |
| 87 | + 4 -4.00000E-02 0.00000E+00 2.00000E-02 7.66124E-02 |
| 88 | + 5 -1.00000E-01 3.51391E-11 5.00000E-02 0.00000E+00 |
| 89 | + 6 -1.00000E-02 3.42902E-11 inf 0.00000E+00 |
| 90 | + 7 -1.00000E-02 8.61040E-12 inf 0.00000E+00 |
| 91 | + |
| 92 | + Linear constraints dual variables: |
| 93 | + idx Lower bound Value Upper bound Value |
| 94 | + 1 -1.30000E-01 0.00000E+00 -1.30000E-01 1.43111E+00 |
| 95 | + 2 -inf 0.00000E+00 -4.90000E-03 4.00339E-10 |
| 96 | + 3 -inf 0.00000E+00 -6.40000E-03 1.54305E-08 |
| 97 | + 4 -inf 0.00000E+00 -3.70000E-03 3.80136E-10 |
| 98 | + 5 -inf 0.00000E+00 -1.20000E-03 4.72629E-11 |
| 99 | + 6 -9.92000E-02 1.50098E+00 inf 0.00000E+00 |
| 100 | + 7 -3.00000E-03 1.51661E+00 2.00000E-03 0.00000E+00 |