Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

License

NotificationsYou must be signed in to change notification settings

nttrd-mdlab/group-equiv-seld

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This repository is the demonstration of the group equivariant Ambisonic signal processing DNNs [1], implemented by the authors.

License

This repository (except submodules) is released under the specific license.ReadLicense file in this repository before you download and use this software.

The submoduleseld-dcase2019 is under its own license.

The scriptfCGModule.py is fromzlin7/CGNet, which is originally released under the MIT License.

Contents

.├── LICENSE├── README.md├── adversarial_attack.py├── article_figure│   └── taslp├── boot_tensorboard.sh├── checkpoints├── dcase19_dataset.py├── docker│   ├── Dockerfile│   └── build.sh├── evaluation.py├── fCGModule.py├── feature_extraction.py├── login_torch_sh.sh├── main.py├── math_util.py├── models.py├── modules.py├── parameter.py├── render_taslp_fig3.py├── render_taslp_fig4.py├── result├── ret_adv├── ret_eval├── run_adversarial_attack.sh├── run_experiment.sh└── seld-dcase2019

Usage

We assume the environment thatdocker/Dockerfile appropriately works.

  1. Clone this repository.
git clone --recursive https://github.com/nttrd-mdlab/group-equiv-seldcd group-equiv-seld
  1. Build the Docker environment.
$cd docker$ ./build.sh> ...> Successfully built 31cc484c9976> Successfully tagged cgdcase:0.2$cd ../
  1. Download the dataset files from the link onthis website. You needfoa_dev.z**,metadata_dev.zip,foa_eval.zip,metadata_eval.zip. Then, generate the normalized dataset usingfeature_extraction.py (do not forget to rewrite the path to the downloaded files infeature_extraction.py).
./login_torch_sh.shpython3  feature_extraction.pyexit
  1. Start model training.
./run_experiment.sh 0  # Specify the GPU number (0-origin) by argument

Trained model is saved to./checkpoints, and the log is saved to./result.

  1. Change experiment conditions by rewritingparameter.py and re-run./run_experiment.sh:

    • Togglemodel=['Conventional', 'Proposed'][1] to[0] to test baseline model.
    • Togglescale_equivariance=True toFalse to disable scale equivariance of proposed method.
    • Switchtrain_rotation_bias=['virtual_rot', 'azi_random', None][0] to[1] to enable rotational data augmentation.
    • Rewritefeature_phase_different_bin=0 toNone to disable time translation invariance of proposed method.
  2. Check and compare performance.

Evaluate the trained model

$ ./login_torch_sh.sh 0$ python3 evaluation.py --resume ./checkpoints/(name of checkpoint file).checkpoint$exit

Compare the progress of (being) trained models

$ ./boot_tensorboard.sh

Then, viewhttp://localhost:6006 with your browser.

  1. Render the figures on the paper:
$ ./login_torch_sh.sh 0$ python3 render_taslp_fig3.py$ python3 render_taslp_fig4.py$exit
  1. Run experiment for adversarial attack.
$ ./run_adversarial_attack.sh 0 ./checkpoints/(name of checkpoint file).checkpoint (output file name)

References

  • [1] R. Sato, K. Niwa, K. Kobayashi, "Ambisonic Signal Processing DNNs Guaranteeing Rotation, Scale and Time Translation Equivariance," IEEE/ACM Trans. ASLP, (to be published), 2021.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors2

  •  
  •  

[8]ページ先頭

©2009-2025 Movatter.jp