Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

Official Implementation of Self-Supervised Street Gaussians for Autonomous Driving

License

NotificationsYou must be signed in to change notification settings

nnanhuang/S3Gaussian

Repository files navigation

S3Gaussian: Self-Supervised Street Gaussians for Autonomous Driving

Nan Huang*,Xiaobao Wei,Wenzhao Zheng$^\dagger$, Pengju An,Ming Lu,Wei Zhan,Masayoshi Tomizuka,Kurt Keutzer,Shanghang Zhang$^\ddagger$

* Work done while interning at UC Berkeley$\dagger$ Project leader$\ddagger$ Corresponding author

S3Gaussian employs 3D Gaussians to model dynamic scenes for autonomous drivingwithout other supervisions (e.g., 3D bounding boxes).

vis

News

  • [2023/5/31] Training & evaluation code release!
  • [2024/5/31] Paper released onarXiv.

Demo

demo

Overview

overview

To tackle the challenges in self-supervised street scene decomposition, we propose a multi-resolution hexplane-based encoder to encode 4D grid into feature planes and a multi-head Gaussian decoder to decode them into deformed 4D Gaussians. We optimize the overall model without extra annotations in a self-supervised manner and achieve superior scene decomposition ability and rendering quality.

Results

overview

Getting Started

Environmental Setups

Our code is developed on Ubuntu 22.04 using Python 3.9 and pytorch=1.13.1+cu116. We also tested on pytorch=2.2.1+cu118. We recommend using conda for the installation of dependencies.

git clone https://github.com/nnanhuang/S3Gaussian.git --recursivecd S3Gaussianconda create -n S3Gaussian python=3.9 conda activate S3Gaussianpip install -r requirements.txtpip install -e submodules/depth-diff-gaussian-rasterizationpip install -e submodules/simple-knn

Preparing Dataset

Follow detailed instructions inPrepare Dataset.

We only use dynamic32 and static32 split.

Training

For training first clip (eg. 0-50 frames), run

python train.py -s $data_dir --port 6017 --expname "waymo" --model_path $model_path

If you want to try novel view synthesis, use

--configs "arguments/nvs.py"

For instance, you can try:

python train.py -s "./data/processed/dynamic32/training/022" --expname "waymo" --model_path "./work_dirs/phase1/dynamic/recon/022"

For training next clip (eg. 51-100 frames), run

python train.py -s $data_dir --port 6017 --expname "waymo" --model_path $model_path --prior_checkpoint "$prior_dir/chkpnt_fine_50000.pth" --configs "arguments/stage2.py"

For instance, you can try:

python train.py -s "./data/processed/dynamic32/training/022" --expname "waymo" --model_path "./work_dirs/phase1/dynamic/recon/p2/022" --prior_checkpoint "./work_dirs/phase1/dynamic/recon/022/chkpnt_fine_50000.pth" --configs "arguments/stage2.py"

Also, you can load an existing checkpoint with:

pythontrain.py-s $data_dir--port6017--expname"waymo"--start_checkpoint"$ckpt_dir/chkpnt_fine_30000.pth"--model_path $model_path

For more scripts examples, please checkhere.

Evaluation and Visualization

You can visualize and eval a checkpoints follow:

pythontrain.py-s $data_dir--port6017--expname"waymo"--start_checkpoint"$ckpt_dir/chkpnt_fine_50000.pth"--model_path $model_path--eval_only

If you use different configs, you will need to add them as well:

--configs "arguments/nvs.py"

Then you can get rendering RGB videos, ground truth RGB videos, depth videos, dynamic rgb videos and static rgb videos.

Acknowledgments

Credits to @Korace0v0 for building 3D Gaussians for street scenes. Many thanks!

Special thanks toStreetGaussians for sharing visualization results!

Our code is based on4D Gaussians andEmerNeRF.

Thanks to these excellent open-sourced repos!

Citation

If you find this project helpful, please consider citing the following paper:

@article{huang2024s3gaussian,        title={S3Gaussian: Self-Supervised Street Gaussians for Autonomous Driving},        author={Huang, Nan and Wei, Xiaobao and Zheng, Wenzhao and An, Pengju and Lu, Ming and Zhan, Wei and Tomizuka,    Masayoshi and Keutzer, Kurt and Zhang, Shanghang},        journal={arXiv preprint arXiv:2405.20323},        year={2024}      }

[8]ページ先頭

©2009-2025 Movatter.jp