Uh oh!
There was an error while loading.Please reload this page.
- Notifications
You must be signed in to change notification settings - Fork44
DAIN, Depth-Aware Video Frame Interpolation implemented with ncnn library
License
nihui/dain-ncnn-vulkan
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
ncnn implementation of DAIN, Depth-Aware Video Frame Interpolation.
dain-ncnn-vulkan usesncnn project as the universal neural network inference framework.
Download Windows/Linux/MacOS Executable for Intel/AMD/Nvidia GPU
https://github.com/nihui/dain-ncnn-vulkan/releases
This package includes all the binaries and models required. It is portable, so no CUDA or Caffe runtime environment is needed :)
DAIN (Depth-Aware Video Frame Interpolation) (CVPR 2019)
https://github.com/baowenbo/DAIN
Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang
This work is developed based on our TPAMI work MEMC-Net, where we propose the adaptive warping layer. Please also consider referring to it.
https://sites.google.com/view/wenbobao/dain
http://arxiv.org/abs/1904.00830
Input two frame images, output one interpolated frame image.
./dain-ncnn-vulkan -0 0.jpg -1 1.jpg -o 01.jpg./dain-ncnn-vulkan -i input_frames/ -o output_frames/
mkdir input_framesmkdir output_frames# find the source fps and format with ffprobe, for example 24fps, AACffprobe input.mp4# extract audioffmpeg -i input.mp4 -vn -acodec copy audio.m4a# decode all framesffmpeg -i input.mp4 input_frames/frame_%06d.png# interpolate 2x frame count./dain-ncnn-vulkan -i input_frames -o output_frames# encode interpolated frames in 48fps with audioffmpeg -framerate 48 -i output_frames/%06d.png -i audio.m4a -c:a copy -crf 20 -c:v libx264 -pix_fmt yuv420p output.mp4
Usage: dain-ncnn-vulkan -0 infile -1 infile1 -o outfile [options]... dain-ncnn-vulkan -i indir -o outdir [options]... -h show this help -v verbose output -0 input0-path input image0 path (jpg/png/webp) -1 input1-path input image1 path (jpg/png/webp) -i input-path input image directory (jpg/png/webp) -o output-path output image path (jpg/png/webp) or directory -n num-frame target frame count (default=N*2) -s time-step time step (0~1, default=0.5) -t tile-size tile size (>=128, default=256) can be 256,256,128 for multi-gpu -m model-path dain model path (default=best) -g gpu-id gpu device to use (default=auto) can be 0,1,2 for multi-gpu -j load:proc:save thread count for load/proc/save (default=1:2:2) can be 1:2,2,2:2 for multi-gpu -f pattern-format output image filename pattern format (%08d.jpg/png/webp, default=ext/%08d.png)
input0-path,input1-pathandoutput-pathaccept file pathinput-pathandoutput-pathaccept file directorynum-frame= target frame counttime-step= interpolation timetile-size= tile size, use smaller value to reduce GPU memory usage, must be multiple of 32, default 256load:proc:save= thread count for the three stages (image decoding + dain interpolation + image encoding), using larger values may increase GPU usage and consume more GPU memory. You can tune this configuration with "4:4:4" for many small-size images, and "2:2:2" for large-size images. The default setting usually works fine for most situations. If you find that your GPU is hungry, try increasing thread count to achieve faster processing.pattern-format= the filename pattern and format of the image to be output, png is better supported, however webp generally yields smaller file sizes, both are losslessly encoded
If you encounter a crash or error, try upgrading your GPU driver:
- Intel:https://downloadcenter.intel.com/product/80939/Graphics-Drivers
- AMD:https://www.amd.com/en/support
- NVIDIA:https://www.nvidia.com/Download/index.aspx
- Download and setup the Vulkan SDK fromhttps://vulkan.lunarg.com/
- For Linux distributions, you can either get the essential build requirements from package manager
dnf install vulkan-headers vulkan-loader-devel
apt-get install libvulkan-dev
pacman -S vulkan-headers vulkan-icd-loader
- Clone this project with all submodules
git clone https://github.com/nihui/dain-ncnn-vulkan.gitcd dain-ncnn-vulkangit submodule update --init --recursive- Build with CMake
- You can pass -DUSE_STATIC_MOLTENVK=ON option to avoid linking the vulkan loader library on MacOS
mkdir buildcd buildcmake ../srccmake --build. -j 4
- test-time sptial augmentation aka TTA-s
- test-time temporal augmentation aka TTA-t
dain-ncnn-vulkan.exe -0 0.png -1 1.png -o out.png
- https://github.com/Tencent/ncnn for fast neural network inference on ALL PLATFORMS
- https://github.com/webmproject/libwebp for encoding and decoding Webp images on ALL PLATFORMS
- https://github.com/nothings/stb for decoding and encoding image on Linux / MacOS
- https://github.com/tronkko/dirent for listing files in directory on Windows
About
DAIN, Depth-Aware Video Frame Interpolation implemented with ncnn library
Topics
Resources
License
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Sponsor this project
Uh oh!
There was an error while loading.Please reload this page.


