Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

TensorFlow implementation of the word2vec (skip-gram model)

NotificationsYou must be signed in to change notification settings

n0obcoder/Skip-Gram_Model-TensorFlow

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TensorFlow implementation of the word2vec (skip-gram model)


My PyTorch implemntation of Skip-Gram Model can be foundhere.

Requirements

  • tensorflow >= 2.0
  • numpy >= 1.18
  • matplotlib
  • tqdm
  • nltk
  • gensim

Training

python main.py

Visualizing real-time training loss in Tensorboard

tensorboard --logdir <PATH_TO_TENSORBOARD_EVENTS_FILE>

NOTE: By default,PATH_TO_TENSORBOARD_EVENTS_FILE is set toSUMMARY_DIR in config.py

Sharing the training loss for Visualization in real-time using Tensorboard

tensorboard dev upload--logdir <PATH_TO_TENSORBOARD_EVENTS_FILE>

Testing

python test.py

Inference

warindiacrimeguitarmoviesdesertphysicsreligionfootballcomputer
invasionprovinceswillbassmovieshoremathematicsjudaismbaseballdigital
sovietpakistanprosecutiondrumalbumshillymathematicalislamchampionshipcomputers
troopmainlandaccusationssolosongsplateauchemistryreligionsbasketballsoftware
armyasianprovokequartetcartoonbasintheoreticalreligiouscoachelectronic
allycolonialprosecutevocalsanimatehighlandsanalysisjewishwrestlerinterface

Blog-Post

Check out my blog post onword2vechere.

About

TensorFlow implementation of the word2vec (skip-gram model)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages


[8]ページ先頭

©2009-2025 Movatter.jp