Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Information of the centroids and geographical limits of the regions, departments, provinces and districts of Peru

NotificationsYou must be signed in to change notification settings

musajajorge/mapsPERU

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

erreroOpen Source LoveProject-Status:ActiveLinuxMintCRAN-statusDownloadsDOImade-with-R

mapsPERU is a package that provides datasets with information of the centroids and geographical limits of the regions, departments, provinces and districts of Peru.

Installation ⏬

InstallmapsPERU fromCRAN:

install.packages("mapsPERU")

or installmapsPERU with

library(remotes)install_github("musajajorge/mapsPERU")

Documentation 📚

The datasets included in this package are:

  • map_REG: Geographic information of the regions of Peru
  • map_DEP: Geographic information of the departments of Peru
  • map_PROV: Geographic information of the provinces of Peru
  • map_DIST: Geographic information of the districts of Peru

Data dictionary

  • map_REG
ColumnTypeDescription
COD_REGIONchrRegion code
REGIONchrRegion name
POBLACION_2025dblProjected population of the region in 2025
coords_xdblLongitude of the centroid of the region
coords_ydblLatitude of the centroid of the region
geometryMULTIPOLYGONMULTIPOLYGON Geometric object

Note: Officially there is no codification for regions, only for departments. Therefore, the codes 150100 for Metropolitan Lima and 159900 for Lima Provinces should be taken as a reference.

  • map_DEP
ColumnTypeDescription
COD_DEPARTAMENTOchrDepartment code
DEPARTAMENTOchrDepartment name
POBLACION_2025dblProjected population of the department in 2025
coords_xdblLongitude of the centroid of the department
coords_ydblLatitude of the centroid of the department
geometryMULTIPOLYGONMULTIPOLYGON Geometric object
  • map_PROV
ColumnTypeDescription
COD_REGIONchrRegion code
COD_DEPARTAMENTOchrDepartment code
COD_PROVINCIAchrProvince code
REGIONchrRegion name
DEPARTAMENTOchrDepartment name
PROVINCIAchrProvince name
POBLACION_2025dblProjected population of the province in 2025
coords_xdblLongitude of the centroid of the province
coords_ydblLatitude of the centroid of the province
geometryMULTIPOLYGONMULTIPOLYGON Geometric object
  • map_DIST
ColumnTypeDescription
COD_REGIONchrRegion code
COD_DEPARTAMENTOchrDepartment code
COD_PROVINCIAchrProvince code
COD_DISTRITOchrDistrict code
REGIONchrRegion name
DEPARTAMENTOchrDepartment name
PROVINCIAchrProvince name
DISTRITOchrDistrict name
REGION_NATURALchrNatural region
POBLACION_2025dblProjected population of the district in 2025
coords_xdblLongitude of the centroid of the district
coords_ydblLatitude of the centroid of the district
geometryMULTIPOLYGONMULTIPOLYGON Geometric object

Usage 💪

You do not need to install additional packages to usemapsPERU datasets; however, if you want to see the structure of each dataset withstr() ordplyr::glimpse() it is advisable to runlibrary(sf) beforehand.

Use departmental dataset in a map with ggplot2

library(mapsPERU)df<-map_DEPlibrary(ggplot2)library(sf)ggplot(df, aes(geometry=geometry))+  geom_sf(aes(fill=DEPARTAMENTO))

In this example we are using the name of the departments as a categorical variable in the graph. You can combine themapsPERU data sets with other categorical or numeric variables that you want to plot.

Use the departmental dataset with centroids in a map with ggplot2

Note thatmapsPERU also provides geographic information of the centroids, so you can include the names of the departments as labels.

library(mapsPERU)df<-map_DEPlibrary(ggplot2)library(sf)ggplot(df, aes(geometry=geometry))+  geom_sf(aes(fill=DEPARTAMENTO))+  geom_text(data=df, aes(coords_x,coords_y,group=NULL,label=DEPARTAMENTO),size=2.5)+  labs(x="",y="")

Use regional dataset in a map with ggplot2

The centroids dataset not only provides the longitudes and latitudes of each region but also includes the geometry field, which is a multipolygon that will allow us to plot numerical variables on our map.

In this example, we will graph the projected population by region for the year 2025.

library(mapsPERU)df<-map_REGlibrary(ggplot2)library(sf)ggplot(df, aes(geometry=geometry))+  geom_sf(aes(fill=POBLACION_2025/1000000))+  scale_fill_gradient (low="#abd9e9",high="#c51b7d",name="Población 2025 (millones)")

Use the regional dataset with centroids in a map with ggplot2

In this example we will show how the use of regional boundaries and centroids datasets facilitates the filtering of specific regions to be displayed on the map.

library(mapsPERU)df<-map_REGdf<-dplyr::filter(df,REGION=="Lima Metropolitana"|REGION=="Lima Provincias"|REGION=="Callao")library(ggplot2)library(sf)ggplot(df, aes(geometry=geometry))+  geom_sf(aes(fill=REGION))+  geom_text(aes(coords_x,coords_y,group=NULL,label=REGION),size=3)+  labs(x="",y="")

Use the provincial dataset in a map with ggplot2

library(mapsPERU)df<-map_PROVdf$Categoría<- cut(df$POBLACION_2025,right=F,breaks=c(0,100000,500000,1000000,Inf),labels=c("[ 0 - 100 mil >","[ 100 mil - 500 mil >","[ 500 mil - 1 millón >","[ 1 millón - ∞ >"))colores<- c('#feebe2','#fbb4b9','#f768a1','#ae017e')library(sf)library(ggplot2)ggplot(df, aes(geometry=geometry))+  scale_fill_manual(values=colores)+  geom_sf(aes(fill=Categoría))

Use the district dataset in a map with ggplot2

library(mapsPERU)df<-map_DISTdf$Categoría<- cut(df$POBLACION_2025,right=F,breaks=c(0,1000,5000,10000,20000,Inf),labels=c("[ 0 - 1000 >","[ 1000 - 5000 >","[ 5000 - 10000 >","[ 10000 - 20000 >","[ 20000 - ∞ >"))colores<- c('#edf8fb','#b3cde3','#8c96c6','#8856a7','#810f7c')library(sf)library(ggplot2)ggplot(df, aes(geometry=geometry))+  scale_fill_manual(values=colores)+  geom_sf(aes(fill=Categoría))

Use the natural region information on a district level map.

library(mapsPERU)df<-map_DISTdf$REGION_NATURAL<- ordered(df$REGION_NATURAL,levels=c("Costa","Sierra","Selva"))colores<- c('#F1C40F','#D35400','#229954')library(sf)library(ggplot2)ggplot(df, aes(geometry=geometry))+  scale_fill_manual(values=colores)+  geom_sf(aes(fill=REGION_NATURAL))+  labs(fill='Región natural')


About

Information of the centroids and geographical limits of the regions, departments, provinces and districts of Peru

Topics

Resources

Stars

Watchers

Forks

Languages


[8]ページ先頭

©2009-2025 Movatter.jp