|
| 1 | +importargparse |
| 2 | +importjson |
| 3 | +importsys |
| 4 | +importos |
| 5 | +importtorch |
| 6 | +importnumpyasnp |
| 7 | +frompathlibimportPath |
| 8 | +importgguf |
| 9 | +fromsentencepieceimportSentencePieceProcessor# type: ignore[import] |
| 10 | + |
| 11 | +try: |
| 12 | +fromsafetensorsimportsafe_open |
| 13 | +exceptImportError: |
| 14 | +print("Please install `safetensors` python package") |
| 15 | +sys.exit(1) |
| 16 | + |
| 17 | + |
| 18 | +defcount_model_parts(dir_model:Path)->int: |
| 19 | +# get number of model parts |
| 20 | +num_parts=0 |
| 21 | +forfilenameinos.listdir(dir_model): |
| 22 | +iffilename.startswith("model-00"): |
| 23 | +num_parts+=1 |
| 24 | + |
| 25 | +ifnum_parts>0: |
| 26 | +print("gguf: found "+str(num_parts)+" model parts") |
| 27 | +returnnum_parts |
| 28 | + |
| 29 | + |
| 30 | +defparse_args()->argparse.Namespace: |
| 31 | +parser=argparse.ArgumentParser(description="Convert a PLaMo model to a GGML compatible file") |
| 32 | +parser.add_argument( |
| 33 | +"--vocab-only",action="store_true", |
| 34 | +help="extract only the vocab", |
| 35 | + ) |
| 36 | +parser.add_argument( |
| 37 | +"--outfile",type=Path, |
| 38 | +help="path to write to; default: based on input", |
| 39 | + ) |
| 40 | +parser.add_argument( |
| 41 | +"model",type=Path, |
| 42 | +help="directory containing model file, or model file itself (*.bin)", |
| 43 | + ) |
| 44 | +parser.add_argument( |
| 45 | +"ftype",type=int,choices=[0,1],default=1,nargs='?', |
| 46 | +help="output format - use 0 for float32, 1 for float16", |
| 47 | + ) |
| 48 | +returnparser.parse_args() |
| 49 | + |
| 50 | + |
| 51 | +args=parse_args() |
| 52 | + |
| 53 | +dir_model=args.model |
| 54 | +ftype=args.ftype |
| 55 | +ifnotdir_model.is_dir(): |
| 56 | +print(f'Error:{args.model} is not a directory',file=sys.stderr) |
| 57 | +sys.exit(1) |
| 58 | + |
| 59 | + |
| 60 | +# possible tensor data types |
| 61 | +# ftype == 0 -> float32 |
| 62 | +# ftype == 1 -> float16 |
| 63 | + |
| 64 | +# map from ftype to string |
| 65 | +ftype_str= ["f32","f16"] |
| 66 | + |
| 67 | +ifargs.outfileisnotNone: |
| 68 | +fname_out=args.outfile |
| 69 | +else: |
| 70 | +# output in the same directory as the model by default |
| 71 | +fname_out=dir_model/f'ggml-model-{ftype_str[ftype]}.gguf' |
| 72 | + |
| 73 | +print("gguf: loading model "+dir_model.name) |
| 74 | + |
| 75 | +withopen(dir_model/"config.json","r",encoding="utf-8")asf: |
| 76 | +hparams=json.load(f) |
| 77 | + |
| 78 | +ifhparams["architectures"][0]!="PlamoForCausalLM": |
| 79 | +print("Model architecture not supported: "+hparams["architectures"][0]) |
| 80 | + |
| 81 | +sys.exit(1) |
| 82 | + |
| 83 | +# get number of model parts |
| 84 | +num_parts=count_model_parts(dir_model) |
| 85 | + |
| 86 | +# from add PLaMo model #3557 |
| 87 | +# https://github.com/ggerganov/llama.cpp/pull/3557/files |
| 88 | + |
| 89 | +ARCH=gguf.MODEL_ARCH.PLAMO |
| 90 | +gguf_writer=gguf.GGUFWriter(fname_out,gguf.MODEL_ARCH_NAMES[ARCH]) |
| 91 | + |
| 92 | +print("gguf: get model metadata") |
| 93 | + |
| 94 | +block_count=hparams["num_hidden_layers"] |
| 95 | + |
| 96 | +gguf_writer.add_name("PLaMo") |
| 97 | +gguf_writer.add_context_length(4096)# not in config.json |
| 98 | +gguf_writer.add_embedding_length(hparams["hidden_size"]) |
| 99 | +gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) |
| 100 | +gguf_writer.add_block_count(block_count) |
| 101 | +gguf_writer.add_head_count(hparams["num_attention_heads"]) |
| 102 | +gguf_writer.add_head_count_kv(hparams["num_attention_heads"]//hparams["n_shared_head"]) |
| 103 | +gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"]) |
| 104 | +gguf_writer.add_file_type(ftype) |
| 105 | + |
| 106 | + |
| 107 | +# TOKENIZATION |
| 108 | + |
| 109 | +print("gguf: get tokenizer metadata") |
| 110 | + |
| 111 | +tokens:list[bytes]= [] |
| 112 | +scores:list[float]= [] |
| 113 | +toktypes:list[int]= [] |
| 114 | + |
| 115 | +tokenizer_model_file=dir_model/'tokenizer.model' |
| 116 | +ifnottokenizer_model_file.is_file(): |
| 117 | +print(f'Error: Missing{tokenizer_model_file}',file=sys.stderr) |
| 118 | +sys.exit(1) |
| 119 | + |
| 120 | +# vocab type sentencepiece |
| 121 | +print("gguf: get sentencepiece tokenizer vocab, scores and token types") |
| 122 | + |
| 123 | +tokenizer=SentencePieceProcessor(str(tokenizer_model_file)) |
| 124 | + |
| 125 | +foriinrange(tokenizer.vocab_size()): |
| 126 | +text:bytes |
| 127 | +score:float |
| 128 | + |
| 129 | +piece=tokenizer.id_to_piece(i) |
| 130 | +text=piece.encode("utf-8") |
| 131 | +score=tokenizer.get_score(i) |
| 132 | + |
| 133 | +toktype=1# defualt to normal token type |
| 134 | +iftokenizer.is_unknown(i): |
| 135 | +toktype=2 |
| 136 | +iftokenizer.is_control(i): |
| 137 | +toktype=3 |
| 138 | + |
| 139 | +# toktype = 4 is user-defined = tokens from added_tokens.json |
| 140 | + |
| 141 | +iftokenizer.is_unused(i): |
| 142 | +toktype=5 |
| 143 | +iftokenizer.is_byte(i): |
| 144 | +toktype=6 |
| 145 | + |
| 146 | +tokens.append(text) |
| 147 | +scores.append(score) |
| 148 | +toktypes.append(toktype) |
| 149 | + |
| 150 | +gguf_writer.add_tokenizer_model("llama") |
| 151 | +gguf_writer.add_token_list(tokens) |
| 152 | +gguf_writer.add_token_scores(scores) |
| 153 | +gguf_writer.add_token_types(toktypes) |
| 154 | +gguf_writer.add_sep_token_id(5) |
| 155 | +gguf_writer.add_pad_token_id(3) |
| 156 | + |
| 157 | +special_vocab=gguf.SpecialVocab(dir_model) |
| 158 | +special_vocab.add_to_gguf(gguf_writer) |
| 159 | + |
| 160 | +# TENSORS |
| 161 | + |
| 162 | +tensor_map=gguf.get_tensor_name_map(ARCH,block_count) |
| 163 | + |
| 164 | +# params for qkv transform |
| 165 | +n_head=hparams["num_attention_heads"] |
| 166 | +n_head_kv=hparams["num_key_value_heads"] |
| 167 | + |
| 168 | +head_dim=hparams["hidden_size"]//n_head |
| 169 | + |
| 170 | +# tensor info |
| 171 | +print("gguf: get tensor metadata") |
| 172 | + |
| 173 | +ifnum_parts==0: |
| 174 | +part_names=iter(("model.safetensors",)) |
| 175 | +else: |
| 176 | +part_names= ( |
| 177 | +f"model-{n:05}-of-{num_parts:05}.safetensors"forninrange(1,num_parts+1) |
| 178 | + ) |
| 179 | + |
| 180 | +forpart_nameinpart_names: |
| 181 | +ifargs.vocab_only: |
| 182 | +break |
| 183 | +print("gguf: loading model part '"+part_name+"'") |
| 184 | +model_part=safe_open(dir_model/part_name,framework="pt") |
| 185 | + |
| 186 | +fornameinmodel_part.keys(): |
| 187 | +if"self_attn.rotary_emb.inv_freq"inname: |
| 188 | +continue |
| 189 | +data=model_part.get_tensor(name) |
| 190 | + |
| 191 | +old_dtype=data.dtype |
| 192 | + |
| 193 | +# convert any unsupported data types to float32 |
| 194 | +ifdata.dtype!=torch.float16anddata.dtype!=torch.float32: |
| 195 | +data=data.to(torch.float32) |
| 196 | + |
| 197 | +data=data.squeeze().numpy() |
| 198 | + |
| 199 | +# map tensor names |
| 200 | +new_name=tensor_map.get_name(name,try_suffixes= (".weight",".bias")) |
| 201 | +ifnew_nameisNone: |
| 202 | +print("Can not map tensor '"+name+"'") |
| 203 | +sys.exit() |
| 204 | + |
| 205 | +n_dims=len(data.shape) |
| 206 | +data_dtype=data.dtype |
| 207 | + |
| 208 | +# if f32 desired, convert any float16 to float32 |
| 209 | +ifftype==0anddata_dtype==np.float16: |
| 210 | +data=data.astype(np.float32) |
| 211 | + |
| 212 | +# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 |
| 213 | +ifftype==1anddata_dtype==np.float16andn_dims==1: |
| 214 | +data=data.astype(np.float32) |
| 215 | + |
| 216 | +# if f16 desired, convert any float32 2-dim weight tensors to float16 |
| 217 | +ifftype==1anddata_dtype==np.float32andname.endswith(".weight")andn_dims==2: |
| 218 | +data=data.astype(np.float16) |
| 219 | + |
| 220 | +print(new_name+", n_dims = "+str(n_dims)+", "+str(old_dtype)+" --> "+str(data.dtype)) |
| 221 | + |
| 222 | +gguf_writer.add_tensor(new_name,data) |
| 223 | + |
| 224 | + |
| 225 | +print("gguf: write header") |
| 226 | +gguf_writer.write_header_to_file() |
| 227 | +print("gguf: write metadata") |
| 228 | +gguf_writer.write_kv_data_to_file() |
| 229 | +ifnotargs.vocab_only: |
| 230 | +print("gguf: write tensors") |
| 231 | +gguf_writer.write_tensors_to_file() |
| 232 | + |
| 233 | +gguf_writer.close() |
| 234 | + |
| 235 | +print(f"gguf: model successfully exported to '{fname_out}'") |
| 236 | +print("") |