Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

Support vector machines flexible framework

License

NotificationsYou must be signed in to change notification settings

mmarouen/SVM_Framework

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

58 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Support vector machines flexible framework
We solve the unconstrained primal SVM formulation
SVM & Softmax classifiers supported
NB:
-Softmax classifier refers to penalized and kernalized logistic regression
-Classical logistic regression can be obtained by setting cost very high & using a linear kernel
-Python implementation in a seperate repository

1. Classifiers/regressors:

LS: regression classifier using penalized least squared loss
Softmax: Softmax classifier using cross entropy loss
SVM:svm classifier using quadratic hinge loss

2. Optimization methods:

BGD: gradient descent (batch)
NGD: Newton-Raphson optimization (batch)
CGD: conjugate gradient descent (batch)
SGD: stochastic gradient descent (under development)

3. Kernels:

gaussian: gaussian kernel
linear: linear kernel
poly:polynomial kernel
For any remarks please let me knowazzouz.marouen@gmail.com


[8]ページ先頭

©2009-2025 Movatter.jp