- Notifications
You must be signed in to change notification settings - Fork209
Machine learning tools in JavaScript
License
mljs/ml
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
This library is a compilation of the tools developed in themljs organization.
It is mainly maintained for use in the browser. If you are working with Node.js, you might prefer to addto your dependencies only the libraries that you need, as they are usually published to npm more often.
We prefix all our npm package names withml-
(eg. ml-matrix) so they are easy to find.
To include the ml.js library in a web page:
<scriptsrc="https://www.lactame.com/lib/ml/6.0.0/ml.min.js"></script>
It will be available as the globalML
variable. The package is in UMD format.
- Principal component analysis (PCA):
ML.PCA
- Hierarchical clustering:
ML.HClust
- K-means clustering:
ML.KMeans
- Naive Bayes:
ML.NaiveBayes
- K-Nearest Neighbor (KNN):
ML.KNN
- Partial least squares (PLS):
ML.PLS
- K-OPLS:
ML.KOPLS
- Cross-validation:
ML.CrossValidation
- Confusion matrix:
ML.ConfusionMatrix
- Decision tree classifier:
ML.DecisionTreeClassifier
- Random forest classifier:
ML.RandomForestClassifier
- Simple linear regression:
ML.SimpleLinearRegression
- Polynomial regression:
ML.PolynomialRegression
- Multivariate linear regression:
ML.MultivariateLinearRegression
- Power regression:
ML.PowerRegression
- Exponential regression:
ML.ExponentialRegression
- Theil-Sen regression:
ML.TheilSenRegression
- Robust polynomial regression:
ML.RobustPolynomialRegression
- Decision tree regression:
ML.DecisionTreeRegression
- Random forest regression:
ML.RandomForestRegression
- Levenberg-Marquardt:
ML.levenbergMarquardt
- Fast Combinatorial Non-negative Least Squares:
ML.FCNNLS
- Matrix:
ML.Matrix
(Matrix class) - Singular value decomposition (SVD):
ML.SVD
- Eigenvalue decomposition (EVD):
ML.EVD
- Cholesky decomposition:
ML.CholeskyDecomposition
- Lu decomposition:
ML.LuDecomposition
- Qr decomposition:
ML.QrDecomposition
- Sparse matrix:
ML.SparseMatrix
- Kernels:
ML.Kernel
- Distance functions:
ML.Distance
- Similarity functions:
ML.Similarity
- Distance matrix:
ML.distanceMatrix
- XORShift-add RNG:
ML.XSadd
- non-negative Generalized Morphological Component Analysis
ML.nGMCA
ML.Array.min
ML.Array.max
ML.Array.median
ML.Array.mean
ML.Array.mode
ML.Array.normed
ML.Array.rescale
ML.Array.sequentialFill
ML.Array.standardDeviation
ML.Array.variance
Functions dealing with an object containing 2 properties x and y, both arrays.
Example:
letresult=ML.ArrayXY.sortX({x:[2,3,1],y:[4,6,2]});// result = {x: [1,2,3], y: [2,4,6]}
ML.ArrayXY.weightedMerge: Merge abscissa values on similar ordinates and weight the group of abscissa
ML.ArrayXY.maxMerge: Merge abscissa values on similar ordinates and keeps the abscissa with bigger ordinate value
ML.ArrayXY.closestX: Get the closest point for a specific abscissa value
ML.ArrayXY.centroidsMerge: Merge abscissa values if the ordinate value is in a list of centroids
ML.ArrayXY.sortX: Sort a set of point based on the abscissas values
ML.ArrayXY.maxY: Sort a set of point based on the abscissas values
ML.ArrayXY.uniqueX: Ensure that x values are unique
- Performance (ROC curve):
ML.Performance
- Principal component analysis (PCA):
ML.PCA
- Savitzky-Golay filter:
ML.savitzkyGolay
- Global Spectral Deconvolution (GSD):
ML.GSD
- Bit array operations:
ML.BitArray
- Hash table:
ML.HashTable
- Pad array:
ML.padArray
- Binary search:
ML.binarySearch
- Number comparison functions for sorting:
ML.numSort
- Random number generation:
ML.Random
About
Machine learning tools in JavaScript