- Notifications
You must be signed in to change notification settings - Fork4
Shorts is R package that creates short sprint profiles
License
Unknown, MIT licenses found
Licenses found
mladenjovanovic/shorts
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
{shorts} is an R package aimed for the analysis of the un-resistedand resisted short sprints (<6sec; without deceleration), creation ofacceleration-velocity profiles (AVP),force-velocity profiles (FVP),andoptimization profiles using variety of sprint traces (e.g.,time-velocity from laser/radar gun, distance-time from timinggates/photocells). It represents a simple to use tool for researcher andpractitioners interested in modeling short sprints performance.
# Install from CRANinstall.packages("shorts")# Or the development version from GitHub# install.packages("remotes")remotes::install_github("mladenjovanovic/shorts")
{shorts} comes with multiple sample data sets. Let’s loadsplit_times andradar_gun_data with N=5 athletes:
library(shorts)library(tidyverse)library(knitr)data("split_times","radar_gun_data")
{shorts} package utilizes modifiedmono-exponential functions tomodel short sprint performance. To model sprint performance using splittimes, distance will be used as predictor and time as target. Sincesplit_times dataset contains data for multiple athletes, let’s extractonly one athlete and model it usingshorts::model_timing_gates()function.
kimberley_data<- filter(split_times,athlete=="Kimberley")kable(kimberley_data)
| athlete | bodyweight | distance | time |
|---|---|---|---|
| Kimberley | 55 | 5 | 1.16 |
| Kimberley | 55 | 10 | 1.89 |
| Kimberley | 55 | 15 | 2.54 |
| Kimberley | 55 | 20 | 3.15 |
| Kimberley | 55 | 30 | 4.31 |
| Kimberley | 55 | 40 | 5.44 |
Parameters estimated using mono-exponential equation aremaximalsprinting speed (
kimberley_profile<-shorts::model_timing_gates(distance=kimberley_data$distance,time=kimberley_data$time)kimberley_profile#> Estimated model parameters#> --------------------------#> MSS MAC TAU PMAX#> 8.591 10.589 0.811 22.743#>#> Model fit estimators#> --------------------#> R2 meanErr meanErr_perc minErr#> 0.99966 -0.00309 -0.53860 -0.05293#> minErr_perc maxErr maxErr_perc maxAbsErr#> -4.57121 0.02699 0.85715 0.05293#> maxAbsErr_perc RMSE RMSE_perc MAE#> 4.57121 0.02779 1.93922 0.02333#> MAE_perc#> 1.19263summary(kimberley_profile)#>#> Formula: time ~ predict_time_at_distance(distance, MSS, MAC)#>#> Parameters:#> Estimate Std. Error t value Pr(>|t|)#> MSS 8.591 0.123 70.1 0.00000025 ***#> MAC 10.589 0.460 23.0 0.00002108 ***#> ---#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1#>#> Residual standard error: 0.034 on 4 degrees of freedom#>#> Number of iterations to convergence: 5#> Achieved convergence tolerance: 0.0000000149coef(kimberley_profile)#> MSS MAC#> 8.59 10.59confint(kimberley_profile,level=0.95)#> 2.5% 97.5%#> MSS 8.27 8.96#> MAC 9.42 12.02
To return the predicted/fitted values (in this case time variable), usepredict() function:
predict(kimberley_profile)#> [1] 1.21 1.90 2.52 3.12 4.30 5.47
To create a simple plot use S3plot() method. There are four typeoptions:"model" (default),"kinematics-time","kinematics-distance", or"residuals":
plot(kimberley_profile)plot(kimberley_profile,"kinematics-time")
plot(kimberley_profile,"kinematics-distance")
plot(kimberley_profile,"residuals")
If you are interested in calculating average split velocity, useshorts::format_splits()
kable(shorts::format_splits(distance=kimberley_data$distance,time=kimberley_data$time))
| split | split_distance_start | split_distance_stop | split_distance | split_time_start | split_time_stop | split_time | split_mean_velocity | split_mean_acceleration |
|---|---|---|---|---|---|---|---|---|
| 1 | 0 | 5 | 5 | 0.00 | 1.16 | 1.158 | 4.32 | 3.729 |
| 2 | 5 | 10 | 5 | 1.16 | 1.89 | 0.735 | 6.80 | 3.381 |
| 3 | 10 | 15 | 5 | 1.89 | 2.54 | 0.648 | 7.72 | 1.409 |
| 4 | 15 | 20 | 5 | 2.54 | 3.15 | 0.608 | 8.22 | 0.835 |
| 5 | 20 | 30 | 10 | 3.15 | 4.31 | 1.164 | 8.59 | 0.316 |
| 6 | 30 | 40 | 10 | 4.31 | 5.44 | 1.131 | 8.84 | 0.222 |
To plot predicted velocity, acceleration, air resistance, force, andpower over distance, useshorts:predict_XXX(). Please note that tocalculate force, air resistance, and power, we need Kimberley’s bodymassand height (as well as other characteristics such as air pressure,temperature and wind - seeget_air_resistance() function).
kimberley_bodymass<-60# in kilogramskimberley_bodyheight<-1.7# in meterskimberley_pred<- tibble(distance= seq(0,40,length.out=1000),# Velocitypred_velocity=shorts::predict_velocity_at_distance(distance,kimberley_profile$parameters$MSS,kimberley_profile$parameters$TAU ),# Accelerationpred_acceleration=shorts::predict_acceleration_at_distance(distance,kimberley_profile$parameters$MSS,kimberley_profile$parameters$TAU ),# Air resistancepred_air_resistance=shorts::predict_air_resistance_at_distance(distance,kimberley_profile$parameters$MSS,kimberley_profile$parameters$TAU,bodymass=kimberley_bodymass,bodyheight=kimberley_bodyheight ),# Forcepred_force=shorts::predict_force_at_distance(distance,kimberley_profile$parameters$MSS,kimberley_profile$parameters$TAU,bodymass=kimberley_bodymass,bodyheight=kimberley_bodyheight ),# Powerpred_power=shorts::predict_power_at_distance(distance,kimberley_profile$parameters$MSS,kimberley_profile$parameters$TAU,bodymass=kimberley_bodymass,bodyheight=kimberley_bodyheight ),)# Convert to longkimberley_pred<- gather(kimberley_pred,"metric","value",-distance)ggplot(kimberley_pred, aes(x=distance,y=value))+ geom_line()+ facet_wrap(~metric,scales="free_y")+ xlab("Distance (m)")+ ylab(NULL)
To do prediction simpler, useshorts::predict_kinematics() function.This will provide kinetics and kinematics for 0-6
predicted_kinematics<- predict_kinematics(kimberley_profile,bodymass=kimberley_bodymass,bodyheight=kimberley_bodyheight)kable(head(predicted_kinematics))
| time | distance | velocity | acceleration | bodymass | inertia | resistance | air_resistance | horizontal_force | horizontal_force_relative | vertical_force | resultant_force | resultant_force_relative | power | power_relative | work | average_power | average_power_relative | RF | force_angle |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.00 | 0.000 | 0.000 | 10.59 | 60 | 0 | 0 | 0.000 | 635 | 10.59 | 589 | 866 | 14.4 | 0 | 0.00 | 0.000 | 0.734 | 42.8 | ||
| 0.01 | 0.001 | 0.105 | 10.46 | 60 | 0 | 0 | 0.003 | 628 | 10.46 | 589 | 860 | 14.3 | 66 | 1.10 | 0.332 | 33.2 | 0.554 | 0.729 | 43.2 |
| 0.02 | 0.002 | 0.209 | 10.33 | 60 | 0 | 0 | 0.011 | 620 | 10.33 | 589 | 855 | 14.2 | 130 | 2.16 | 1.313 | 65.6 | 1.094 | 0.725 | 43.5 |
| 0.03 | 0.005 | 0.312 | 10.21 | 60 | 0 | 0 | 0.023 | 612 | 10.21 | 589 | 849 | 14.2 | 191 | 3.18 | 2.918 | 97.3 | 1.621 | 0.721 | 43.9 |
| 0.04 | 0.008 | 0.413 | 10.08 | 60 | 0 | 0 | 0.041 | 605 | 10.08 | 589 | 844 | 14.1 | 250 | 4.17 | 5.124 | 128.1 | 2.135 | 0.717 | 44.2 |
| 0.05 | 0.013 | 0.513 | 9.96 | 60 | 0 | 0 | 0.063 | 597 | 9.96 | 589 | 839 | 14.0 | 307 | 5.11 | 7.910 | 158.2 | 2.637 | 0.712 | 44.6 |
To get model residuals, useresiduals() function:
residuals(kimberley_profile)#> [1] -0.05293 -0.00402 0.01997 0.02699 0.01376 -0.02232
Package{shorts} comes withfind_XXX() family of functions thatallow finding peak power and it’s location, as well ascriticaldistance over which velocity, acceleration, or power drops belowcertain threshold:
# Peak power and locationshorts::find_peak_power_distance(MSS=kimberley_profile$parameters$MSS,MAC=kimberley_profile$parameters$MAC,bodymass=kimberley_bodymass,bodyheight=kimberley_bodyheight)#> $peak_power#> [1] 1384#>#> $distance#> [1] 1.42# Distance over which power is over 80%shorts::find_power_critical_distance(MSS=kimberley_profile$parameters$MSS,MAC=kimberley_profile$parameters$MAC,bodymass=kimberley_bodymass,bodyheight=kimberley_bodyheight,percent=0.8)#> $lower#> [1] 0.342#>#> $upper#> [1] 4.27# Distance over which acceleration is under 50%shorts::find_acceleration_critical_distance(MSS=kimberley_profile$parameters$MSS,MAC=kimberley_profile$parameters$MAC,percent=0.5)#> [1] 1.35# Distance over which velocity is over 95%shorts::find_velocity_critical_distance(MSS=kimberley_profile$parameters$MSS,MAC=kimberley_profile$parameters$MAC,percent=0.95)#> [1] 14.3
The radar gun data is modeled using measured velocity as target variableand time as predictor. Individual analysis is performed usingshorts::model_radar_gun() function orshorts::model_laser_gun()(they are aliases). Let’s do analysis for Jim:
jim_data<- filter(radar_gun_data,athlete=="Jim")jim_profile<-shorts::model_radar_gun(time=jim_data$time,velocity=jim_data$velocity)jim_profile#> Estimated model parameters#> --------------------------#> MSS MAC TAU PMAX#> 7.998 8.999 0.889 17.993#>#> Estimated model corrections#> --------------------------#> TC#> -0.00011#>#> Model fit estimators#> --------------------#> R2 meanErr meanErr_perc minErr#> 0.9992440860 -0.0000000248 -Inf -0.1640450506#> minErr_perc maxErr maxErr_perc maxAbsErr#> -Inf 0.1511233656 2.3325106593 0.1640450506#> maxAbsErr_perc RMSE RMSE_perc MAE#> Inf 0.0505025383 Inf 0.0392723633#> MAE_perc#> Infsummary(jim_profile)#>#> Formula: velocity ~ predict_velocity_at_time(time - TC, MSS, MAC)#>#> Parameters:#> Estimate Std. Error t value Pr(>|t|)#> MSS 7.99801 0.00319 2504.55 <0.0000000000000002 ***#> MAC 8.99871 0.01997 450.61 <0.0000000000000002 ***#> TC -0.00011 0.00123 -0.09 0.93#> ---#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1#>#> Residual standard error: 0.0506 on 597 degrees of freedom#>#> Number of iterations to convergence: 4#> Achieved convergence tolerance: 0.0000000149confint(jim_profile)#> 2.5% 97.5%#> MSS 7.99175 8.00429#> MAC 8.95959 9.03797#> TC -0.00253 0.00229plot(jim_profile)
In addition toshorts::model_radar_gun()function also estimatedtime-correction (
Rather than estimatingshorts::model_radar_gun() functionallows you to utilize peak velocity observed in the data asuse_observed_MSS parameter toTRUE:
jim_profile<-shorts::model_radar_gun(time=jim_data$time,velocity=jim_data$velocity,use_observed_MSS=TRUE)jim_profile#> Estimated model parameters#> --------------------------#> MSS MAC TAU PMAX#> 8.095 8.678 0.933 17.563#>#> Estimated model corrections#> --------------------------#> TC#> -0.0112#>#> Model fit estimators#> --------------------#> R2 meanErr meanErr_perc minErr#> 0.9988 -0.0388 -Inf -0.2287#> minErr_perc maxErr maxErr_perc maxAbsErr#> -Inf 0.1825 2.8174 0.2287#> maxAbsErr_perc RMSE RMSE_perc MAE#> Inf 0.0798 Inf 0.0643#> MAE_perc#> Infsummary(jim_profile)#>#> Formula: velocity ~ predict_velocity_at_time(time - TC, MSS, MAC)#>#> Parameters:#> Estimate Std. Error t value Pr(>|t|)#> MSS 8.09500 0.00521 1554.10 < 0.0000000000000002 ***#> MAC 8.67822 0.03017 287.60 < 0.0000000000000002 ***#> TC -0.01118 0.00203 -5.52 0.000000051 ***#> ---#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1#>#> Residual standard error: 0.08 on 597 degrees of freedom#>#> Number of iterations to convergence: 5#> Achieved convergence tolerance: 0.0000000149
Some tether devices provide data out in a velocity-at-distance format.In this case, velocity is the outcome variable and distance is thepredictor. To estimate sprint profiles fromtether data, useshorts::model_tether() function.
# This creates sprint tracetether_df<-shorts::create_sprint_trace(MSS=7,MAC=6,time= seq(0.01,6,by=0.01))m1<- model_tether(distance=tether_df$distance,velocity=tether_df$velocity)m1#> Estimated model parameters#> --------------------------#> MSS MAC TAU PMAX#> 7.00 6.00 1.17 10.50#>#> Model fit estimators#> --------------------#> R2 meanErr#> 0.999999999999999778 0.000000000000000464#> meanErr_perc minErr#> 0.000000000000849181 -0.000000000000038081#> minErr_perc maxErr#> -0.000000000032006657 0.000000000000298428#> maxErr_perc maxAbsErr#> 0.000000000499514588 0.000000000000298428#> maxAbsErr_perc RMSE#> 0.000000000499514588 0.000000000000012599#> RMSE_perc MAE#> 0.000000000020448893 0.000000000000001438#> MAE_perc#> 0.000000000000981334plot(m1)
Settinguse_observed_MSS parameter toTRUE in theshorts::model_tether() function also allows you to use observedpeakvelocity as
In the case when distance is not centered at zero, useshorts::model_tether_DC() which also estimated thedistancecorrection (
# This creates sprint tracetether_df<-shorts::create_sprint_trace(MSS=7,MAC=6,time= seq(0.001,6,by=0.01),# Add distance shiftDC=5)m1<- model_tether_DC(distance=tether_df$distance,velocity=tether_df$velocity)m1#> Estimated model parameters#> --------------------------#> MSS MAC TAU PMAX#> 7.00 6.00 1.17 10.50#>#> Estimated model corrections#> --------------------------#> DC#> 5#>#> Model fit estimators#> --------------------#> R2 meanErr meanErr_perc#> 1.0000000000000 0.0000000000648 0.0000008098034#> minErr minErr_perc maxErr#> -0.0000000000152 -0.0000000002897 0.0000000287380#> maxErr_perc maxAbsErr maxAbsErr_perc#> 0.0004791725496 0.0000000287380 0.0004791725496#> RMSE RMSE_perc MAE#> 0.0000000011812 0.0000195628726 0.0000000000741#> MAE_perc#> 0.0000008099718plot(m1)
With the modern technologies like GPS and LPS, session acceleration andvelocity can be tracked continuously. This provides an opportunity toestimate short sprint profiles fromin-situ, without the need forexplicit testing (assuming the maximal effort was performed). Theanalysis is based on the theoretical model where acceleration andvelocity have linear relationship (i.e., mono-exponential model appliedthus far). The time frame of the analysis can vary from single drills(e.g., sprint drills), session, week, to multiple weeks.
Here is an example of the data collected during one basketball sessionfor a single person. Duration was approx. 90 min with 20
data("LPS_session")LPS_session %>% ggplot(aes(x=x,y=y))+ geom_point(alpha=0.1)
The next figure plots instant acceleration and velocity:
LPS_session %>% ggplot(aes(x=velocity,y=acceleration))+ geom_point(alpha=0.1)
To estimate embedded short sprint profile, we need to filter outpositive acceleration and velocities over 3
embedded_model<- model_in_situ(LPS_session$velocity,LPS_session$acceleration,velocity_threshold=4)LPS_session %>% filter(acceleration>0) %>% ggplot(aes(x=velocity,y=acceleration))+ geom_point(alpha=0.1)+ geom_point(data=embedded_model$data,color="red" )+ geom_abline(intercept=embedded_model$parameters$MAC,slope=-embedded_model$parameters$MAC/embedded_model$parameters$MSS,linetype="dotted",color="red")+ scale_x_continuous(expand= c(0,0),limits= c(0,embedded_model$parameters$MSS))+ scale_y_continuous(expand= c(0,0),limits= c(0,embedded_model$parameters$MAC))
To estimateForce-Velocity Profile (FVP) using approach by Samozinoet al. (2016, 2022) useshorts::create_FVP():
kimberley_fv<-shorts::create_FVP(MSS=kimberley_profile$parameters$MSS,MAC=kimberley_profile$parameters$MAC,# These are needed to estimate air resistancebodymass=kimberley_bodymass,bodyheight=kimberley_bodyheight)kimberley_fv#> $bodymass#> [1] 60#>#> $F0#> [1] 635#>#> $F0_rel#> [1] 10.6#>#> $V0#> [1] 8.85#>#> $Pmax#> [1] 1405#>#> $Pmax_rel#> [1] 23.4#>#> $FV_slope#> [1] -1.2
To convert back toAcceleration-Velocity Profile (AVP), use:
kimberley_avp<-shorts::convert_FVP(F0=kimberley_fv$F0,V0=kimberley_fv$V0,bodymass=kimberley_bodymass,bodyheight=kimberley_bodyheight)kimberley_avp#> $MSS#> [1] 8.59#>#> $MAC#> [1] 10.6
{shorts} package also allows utilizing external load in estimatingFVP, as well as using FVP parameters to predict kinematic and kineticvariables. External load is represented either with additionalinertia (i.e., weight vest), horizontalresistance (i.e., tetherdevice that create additional resistance or help, or a hill sprinting),or both (i.e., a sled, which have both inertia and resistance due tofriction forces). One might also consider head and tail wind as a formof resistance (or assistance).
Let’s see how theoretical model, assuming FVP isdeterminant ofperformance (which I do not agree with, BTW), predicts changes insprint characteristics (i.e.,
loads_df<- rbind( tibble(type="Weight vest",magnitude= seq(0,20,length.out=100),inertia=magnitude,resistance=0), tibble(type="Tether",magnitude= seq(-50,200,length.out=100),inertia=0,resistance=magnitude), tibble(type="Sled",magnitude= seq(0,40,length.out=100),inertia=magnitude,resistance=magnitude*9.81*0.4)) %>% mutate(data.frame(shorts::convert_FVP(F0=kimberley_fv$F0,V0=kimberley_fv$V0,bodymass=kimberley_bodymass,bodyheight=kimberley_bodyheight,inertia=inertia,resistance=resistance )) )loads_df %>% pivot_longer(cols= c(MSS,MAC),names_to="parameter") %>% ggplot(aes(x=magnitude,y=value,color=parameter))+ geom_vline(xintercept=0,linetype="dotted")+ geom_line()+ facet_wrap(~type,scales="free_x")+ ylab(NULL)
Following figure depicts the effect on split times under different loadtypes and magnitudes, assuming FVP to be determinant of performance(i.e., causal mechanism):
dist_df<- expand_grid(loads_df,distance= c(5,10,20,30,40)) %>% mutate(time= predict_time_at_distance(distance,MSS,MAC),distance=factor( paste0(distance,"m"),levels= c("5m","10m","20m","30m","40m")) )dist_df %>% ggplot(aes(x=magnitude,y=time,color=distance))+ geom_vline(xintercept=0,linetype="dotted")+ geom_line()+ facet_wrap(~type,scales="free_x")+ ylab("Time (s)")
One can use external resistance when predicting force or power:
shorts::predict_force_at_time(time=0.5,MSS=9,MAC=7,bodymass=75,inertia=20,resistance=50)#> [1] 503shorts::predict_power_at_time(time=0.5,MSS=9,MAC=7,bodymass=75,inertia=20,resistance=50)#> [1] 1459shorts::predict_time_at_distance_FV(distance=10,F0=750,V0=8,bodymass=75,inertia=20,resistance=50)#> [1] 2.26
External resistances can also be utilized in theOptimization functions, covered later.
You have probably noticed that estimated
Here I will provide quick summary (see more in Jovanović M., 2023).Often, this bias in estimates is dealt with by using heuristic rule ofthumb of adding time correction (time_correction) to split times(e.g. from 0.3-0.5
kimberley_profile_fixed_TC<-shorts::model_timing_gates(distance=kimberley_data$distance,time=kimberley_data$time+0.3)kimberley_profile_fixed_TC#> Estimated model parameters#> --------------------------#> MSS MAC TAU PMAX#> 9.13 6.63 1.38 15.12#>#> Model fit estimators#> --------------------#> R2 meanErr meanErr_perc minErr#> 0.99997 0.00101 0.12559 -0.00769#> minErr_perc maxErr maxErr_perc maxAbsErr#> -0.22296 0.01640 1.12474 0.01640#> maxAbsErr_perc RMSE RMSE_perc MAE#> 1.12474 0.00814 0.47704 0.00639#> MAE_perc#> 0.28570summary(kimberley_profile_fixed_TC)#>#> Formula: time ~ predict_time_at_distance(distance, MSS, MAC)#>#> Parameters:#> Estimate Std. Error t value Pr(>|t|)#> MSS 9.1278 0.0536 170 0.0000000071 ***#> MAC 6.6257 0.0657 101 0.0000000579 ***#> ---#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1#>#> Residual standard error: 0.00997 on 4 degrees of freedom#>#> Number of iterations to convergence: 5#> Achieved convergence tolerance: 0.0000000149coef(kimberley_profile_fixed_TC)#> MSS MAC#> 9.13 6.63
Instead of providing forTC, this parameter can be estimated usingshorts::model_timing_gates_TC().
kimberley_profile_TC<-shorts::model_timing_gates_TC(distance=kimberley_data$distance,time=kimberley_data$time)kimberley_profile_TC#> Estimated model parameters#> --------------------------#> MSS MAC TAU PMAX#> 8.97 7.27 1.23 16.31#>#> Estimated model corrections#> --------------------------#> TC#> -0.235#>#> Model fit estimators#> --------------------#> R2 meanErr meanErr_perc#> 0.9999996942338 0.0000000000185 0.0018162748771#> minErr minErr_perc maxErr#> -0.0011807344888 -0.0623737183716 0.0012094657303#> maxErr_perc maxAbsErr maxAbsErr_perc#> 0.0597477188383 0.0012094657303 0.0623737183716#> RMSE RMSE_perc MAE#> 0.0007983564900 0.0374822377932 0.0006586033619#> MAE_perc#> 0.0282353234295
Instead of estimatingTC,{shorts} package features a method ofestimating flying start distance (FD):
kimberley_profile_FD<-shorts::model_timing_gates_FD(distance=kimberley_data$distance,time=kimberley_data$time)kimberley_profile_FD#> Estimated model parameters#> --------------------------#> MSS MAC TAU PMAX#> 9.00 6.99 1.29 15.74#>#> Estimated model corrections#> --------------------------#> FD#> 0.302#>#> Model fit estimators#> --------------------#> R2 meanErr meanErr_perc minErr#> 0.999999963 0.000000645 0.000318263 -0.000403616#> minErr_perc maxErr maxErr_perc maxAbsErr#> -0.012817270 0.000455703 0.010565804 0.000455703#> maxAbsErr_perc RMSE RMSE_perc MAE#> 0.012817270 0.000275866 0.008402638 0.000236754#> MAE_perc#> 0.007829105
If you want to use fixedFD parameter (e.g., when you know what is theflying distance), useshorts::model_timing_gates_FD_fixed() function:
kimberley_profile_fixed_FD<-shorts::model_timing_gates_FD_fixed(distance=kimberley_data$distance,time=kimberley_data$time,FD=0.5)kimberley_profile_fixed_FD#> Estimated model parameters#> --------------------------#> MSS MAC TAU PMAX#> 9.18 6.23 1.47 14.30#>#> Estimated model corrections#> --------------------------#> FD#> 0.5#>#> Model fit estimators#> --------------------#> R2 meanErr meanErr_perc minErr#> 0.99997 0.00125 0.17740 -0.00790#> minErr_perc maxErr maxErr_perc maxAbsErr#> -0.25099 0.01546 1.33523 0.01546#> maxAbsErr_perc RMSE RMSE_perc MAE#> 1.33523 0.00794 0.56493 0.00672#> MAE_perc#> 0.34991
There are other corrections involving time correction (TC), distancecorrection (DC), flying distance correction (FD), and time anddistance corrections (TC+DC). They are implemented in themodel_timing_gates_ andmodel_time_distance_ functions. Thedifference between themodel_timing_gates_ andmodel_time_distance_is in reversing predictor and outcome variables.
model_ family of functions come with CV feature that is performed bysetting the function parameter CV to desired number of folds. Thisfeature is very useful for checking model parameters robustness andmodel predictions on unseen data. Let’s use Kimberley again, but thistime perform special kind of CV, leave-one-out-cross-validation (LOOCV):
kimberley_profile_CV<-shorts::model_timing_gates(distance=kimberley_data$distance,time=kimberley_data$time,# To perform LOOCV number of folds is equal to# number of observationsCV= nrow(kimberley_data))kimberley_profile_CV#> Estimated model parameters#> --------------------------#> MSS MAC TAU PMAX#> 8.591 10.589 0.811 22.743#>#> Model fit estimators#> --------------------#> R2 meanErr meanErr_perc minErr#> 0.99966 -0.00309 -0.53860 -0.05293#> minErr_perc maxErr maxErr_perc maxAbsErr#> -4.57121 0.02699 0.85715 0.05293#> maxAbsErr_perc RMSE RMSE_perc MAE#> 4.57121 0.02779 1.93922 0.02333#> MAE_perc#> 1.19263#>#>#> Cross-Validation#> ------------------------------#> Parameters:#> .fold MSS MAC TAU PMAX#> 1 1 8.69 10.2 0.856 22.1#> 2 2 8.56 10.8 0.795 23.0#> 3 3 8.39 11.1 0.760 23.2#> 4 4 8.57 10.8 0.797 23.0#> 5 5 8.61 10.6 0.813 22.8#> 6 6 8.60 10.5 0.815 22.7#>#> Testing model fit estimators (overall):#> R2 meanErr meanErr_perc minErr#> 0.9990 -0.0124 -0.8548 -0.0801#> minErr_perc maxErr maxErr_perc maxAbsErr#> -5.9601 0.0344 1.0940 0.0801#> maxAbsErr_perc RMSE RMSE_perc MAE#> 5.9601 0.0474 2.5920 0.0392#> MAE_perc#> 1.7227
Radar gun data often comes with much more observations, thus we can setsmaller CV parameter:
jim_profile_CV<-shorts::model_radar_gun(time=jim_data$time,velocity=jim_data$velocity,CV=10)jim_profile_CV#> Estimated model parameters#> --------------------------#> MSS MAC TAU PMAX#> 7.998 8.999 0.889 17.993#>#> Estimated model corrections#> --------------------------#> TC#> -0.00011#>#> Model fit estimators#> --------------------#> R2 meanErr meanErr_perc minErr#> 0.9992440860 -0.0000000248 -Inf -0.1640450506#> minErr_perc maxErr maxErr_perc maxAbsErr#> -Inf 0.1511233656 2.3325106593 0.1640450506#> maxAbsErr_perc RMSE RMSE_perc MAE#> Inf 0.0505025383 Inf 0.0392723633#> MAE_perc#> Inf#>#>#> Cross-Validation#> ------------------------------#> Parameters:#> .fold MSS MAC TAU PMAX#> 1 1 8 8.99 0.889 18#> 2 2 8 9.00 0.888 18#> 3 3 8 9.00 0.889 18#> 4 4 8 9.00 0.889 18#> 5 5 8 9.00 0.889 18#> 6 6 8 9.00 0.888 18#> 7 7 8 9.00 0.889 18#> 8 8 8 9.00 0.889 18#> 9 9 8 9.01 0.888 18#> 10 10 8 8.99 0.890 18#>#> Testing model fit estimators (overall):#> R2 meanErr meanErr_perc minErr#> 0.9992387 -0.0000138 -Inf -0.1616499#> minErr_perc maxErr maxErr_perc maxAbsErr#> -Inf 0.1507892 2.3273526 0.1616499#> maxAbsErr_perc RMSE RMSE_perc MAE#> Inf 0.0506812 Inf 0.0394415#> MAE_perc#> Inf
Using the method outlined in Samozinoet al (2022), one can find theoptimal profiles, as well as the profile imbalance (compared to theoptimal), for both sprint profiles (i.e.,
MSS<-10MAC<-8bodymass<-75fv<- create_FVP(MSS,MAC,bodymass)opt_df<- tibble(dist= seq(5,50,by=5)) %>% mutate(`Sprint Profile`= optimal_MSS_MAC(distance=dist,MSS,MAC )[["profile_imb"]],`FV Profile`= optimal_FV(distance=dist,fv$F0,fv$V0,bodymass )[["profile_imb"]],`FV Profile (PeakPower)`= optimal_FV(distance=dist,fv$F0,fv$V0,bodymass,method="peak" )[["profile_imb"]],`Probe FV`= probe_FV(distance=dist,fv$F0,fv$V0,bodymass )[["profile_imb"]],`Probe MSS/MAC`= probe_MSS_MAC(distance=dist,MSS,MAC )[["profile_imb"]] ) %>% pivot_longer(-dist,names_to="profile")opt_dist<- tibble(`Sprint Profile`= find_optimal_distance(MSS,MAC,optimal_func=optimal_MSS_MAC ),`FV Profile`= find_optimal_distance(fv$F0,fv$V0,bodymass,optimal_func=optimal_FV ),`FV Profile (PeakPower)`= find_optimal_distance(fv$F0,fv$V0,bodymass,optimal_func=optimal_FV,method="peak" ),`Probe FV`= find_optimal_distance(fv$F0,fv$V0,bodymass,optimal_func=probe_FV ),`Probe MSS/MAC`= find_optimal_distance(MSS,MAC,optimal_func=probe_MSS_MAC )) %>% pivot_longer(cols=1:5,names_to="profile")ggplot(opt_df, aes(x=dist,y=value,color=profile))+ geom_hline(yintercept=100,linetype="dashed",alpha=0.6)+ geom_line()+ geom_point(data=opt_dist, aes(x=value,y=100),size=2)+ xlab("Distance (m)")+ ylab("Profile imbalance")
One can use the{shorts}} package for simulating data by using twofunctions:create_sprint_trace() andcreate_timing_gates_splits():
create_sprint_trace(MSS=7,MAC=6,distance= c(5,10,20,30,40),# Add flying distanceFD=0.5)#> time distance velocity acceleration sprint_time#> 1 1.24 5 5.33 1.4280 1.67#> 2 2.10 10 6.20 0.6839 2.53#> 3 3.63 20 6.78 0.1850 4.06#> 4 5.08 30 6.94 0.0532 5.51#> 5 6.52 40 6.98 0.0155 6.95#> sprint_distance#> 1 5.5#> 2 10.5#> 3 20.5#> 4 30.5#> 5 40.5create_timing_gates_splits(MSS=7,MAC=6,gates= c(5,10,20,30,40),# Add time-shift (i.e., rection time of 200ms)TC=0.2)#> [1] 1.78 2.65 4.19 5.64 7.08
Usingpredict_ family of functions, one can predict kinematics andkinetics usingknown
Jovanović, M., Vescovi, J.D. (2022).{shorts}: An R Package forModeling Short Sprints.International Journal of Strength andConditioning, 2(1).https://doi.org/10.47206/ijsc.v2i1.74
Jovanović M. (2023).Bias in estimated short sprint profiles usingtiming gates due to the flying start: simulation study and proposedsolutions.Computer Methods in Biomechanics and BiomedicalEngineering:1–11.https://doi.org/10.1080/10255842.2023.2170713
Jovanović M.,et al. (2024).Effects of the Flying Start onEstimated Short Sprint Profiles Using Timing Gates.Sensors 2024,24(9), 2894.https://doi.org/10.3390/s24092894
Jovanović M.,et al. (2024).Agreement and Sensitivity of theAcceleration–Velocity Profile Derived via Local PositioningSystem.Sensors 2024, 24(19), 6192.https://doi.org/10.3390/s24196192
Vescovi, JD and Jovanović, M. (2021).Sprint MechanicalCharacteristics of Female Soccer Players: A Retrospective PilotStudy to Examine a Novel Approach for Correction of Timing GateStarts.Front Sports Act Living 3: 629694, 2021.https://doi.org/10.3389/fspor.2021.629694
To cite{shorts}, please use the following command to get the BibTexentry:
citation("shorts")Please refer to these publications for more information on short sprintsmodeling using mono-exponential equation:
Chelly SM, Denis C. 2001. Leg power and hopping stiffness: relationshipwith sprint running performance: Medicine and Science in Sports andExercise:326–333. DOI: 10.1097/00005768-200102000-00024.
Clark KP, Rieger RH, Bruno RF, Stearne DJ. 2017. The NFL Combine 40-YardDash: How Important is Maximum Velocity? Journal of Strength andConditioning Research:1. DOI: 10.1519/JSC.0000000000002081.
Clavel, P., Leduc, C., Morin, J.-B., Buchheit, M., & Lacome, M. (2023).Reliability of individual acceleration-speed profile in-situ in eliteyouth soccer players. Journal of Biomechanics, 153, 111602.https://doi.org/10.1016/j.jbiomech.2023.111602
Furusawa K, Hill AV, and Parkinson JL. The dynamics of” sprint” running.Proceedings of the Royal Society of London. Series B, Containing Papersof a Biological Character 102 (713): 29-42, 1927
Greene PR. 1986. Predicting sprint dynamics from maximum-velocitymeasurements. Mathematical Biosciences 80:1–18. DOI:10.1016/0025-5564(86)90063-5.
Haugen TA, Tønnessen E, Seiler SK. 2012. The Difference Is in the Start:Impact of Timing and Start Procedure on Sprint Running Performance:Journal of Strength and Conditioning Research 26:473–479. DOI:10.1519/JSC.0b013e318226030b.
Samozino P, Rabita G, Dorel S, Slawinski J, Peyrot N, Saez de VillarrealE, Morin J-B. 2016. A simple method for measuring power, force, velocityproperties, and mechanical effectiveness in sprint running: Simplemethod to compute sprint mechanics. Scandinavian Journal of Medicine &Science in Sports 26:648–658. DOI: 10.1111/sms.12490.
Samozino P. 2018. A Simple Method for Measuring Force, Velocity andPower Capabilities and Mechanical Effectiveness During Sprint Running.In: Morin J-B, Samozino P eds. Biomechanics of Training and Testing.Cham: Springer International Publishing, 237–267. DOI:10.1007/978-3-319-05633-3_11.
Samozino P, Peyrot N, Edouard P, Nagahara R, Jimenez‐Reyes P,Vanwanseele B, Morin J. 2022. Optimal mechanical force‐velocity profilefor sprint acceleration performance.Scandinavian Journal of Medicine &Science in Sports 32:559–575. DOI: 10.1111/sms.14097.
About
Shorts is R package that creates short sprint profiles
Resources
License
Unknown, MIT licenses found
Licenses found
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Packages0
Uh oh!
There was an error while loading.Please reload this page.














