Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

MASt3R-SLAM: Real-Time Dense SLAM with 3D Reconstruction Priors

License

NotificationsYou must be signed in to change notification settings

min-hieu-netropy/MASt3R-SLAM

 
 

Repository files navigation

Riku Murai* ·Eric Dexheimer* ·Andrew J. Davison

(* Equal Contribution)

teaser


Getting Started

Installation

conda create -n mast3r-slam python=3.11conda activate mast3r-slam

Check the system's CUDA version with nvcc

nvcc --version

Install pytorch withmatching CUDA version following:

# CUDA 11.8conda install pytorch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1  pytorch-cuda=11.8 -c pytorch -c nvidia# CUDA 12.1conda install pytorch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 pytorch-cuda=12.1 -c pytorch -c nvidia# CUDA 12.4conda install pytorch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 pytorch-cuda=12.4 -c pytorch -c nvidia

Clone the repo and install the dependencies.

git clone https://github.com/rmurai0610/MASt3R-SLAM.git --recursivecd MAST3R-SLAM# if you've clone the repo without --recursive run# git submodule update --init --recursivepip install -e thirdparty/mast3rpip install -e thirdparty/in3dpip install --no-build-isolation -e .

Setup the checkpoints for MASt3R and retrieval. The license for the checkpoints and more information on the datasets used is writtenhere.

mkdir -p checkpoints/wget https://download.europe.naverlabs.com/ComputerVision/MASt3R/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric.pth -P checkpoints/wget https://download.europe.naverlabs.com/ComputerVision/MASt3R/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric_retrieval_trainingfree.pth -P checkpoints/wget https://download.europe.naverlabs.com/ComputerVision/MASt3R/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric_retrieval_codebook.pkl -P checkpoints/

Examples

bash ./scripts/download_tum.shpython main.py --dataset datasets/tum/rgbd_dataset_freiburg1_room/ --config config/calib.yaml

Live Demo

Connect a realsense camera to the PC and run

python main.py --dataset realsense --config config/base.yaml

Running on a video

Our system can process either MP4 videos or folders containing RGB images.

python main.py --dataset <path/to/video>.mp4 --config config/base.yamlpython main.py --dataset <path/to/folder> --config config/base.yaml

Downloading Dataset

TUM-RGBD Dataset

bash ./scripts/download_tum.sh

7-Scenes Dataset

bash ./scripts/download_7_scenes.sh

EuRoC Dataset

bash ./scripts/download_euroc.sh

ETH3D SLAM Dataset

bash ./scripts/download_eth3d.sh

Running Evaluations

All evaluation script will run our system in a single-threaded, headless mode.We can run evaluations with/without calibration:

TUM-RGBD Dataset

bash ./scripts/eval_tum.sh bash ./scripts/eval_tum.sh --no-calib

7-Scenes Dataset

bash ./scripts/eval_7_scenes.sh bash ./scripts/eval_7_scenes.sh --no-calib

EuRoC Dataset

bash ./scripts/eval_euroc.sh bash ./scripts/eval_euroc.sh --no-calib

ETH3D SLAM Dataset

bash ./scripts/eval_eth3d.sh

Reproducibility

There might be minor differences between the released version and the results in the paper after developing this multi-processing version.We run all our experiments on an RTX 4090, and the performance may differ when running with a different GPU.

Acknowledgement

We sincerely thank the developers and contributors of the many open-source projects that our code is built upon.

Citation

If you found this code/work to be useful in your own research, please considering citing the following:

@article{murai2024_mast3rslam,title={{MASt3R-SLAM}: Real-Time Dense {SLAM} with {3D} Reconstruction Priors},author={Murai, Riku and Dexheimer, Eric and Davison, Andrew J.},journal={arXiv preprint},year={2024},}

About

MASt3R-SLAM: Real-Time Dense SLAM with 3D Reconstruction Priors

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python56.1%
  • Cuda29.6%
  • Shell6.2%
  • C++4.1%
  • GLSL4.0%

[8]ページ先頭

©2009-2025 Movatter.jp