Uh oh!
There was an error while loading.Please reload this page.
- Notifications
You must be signed in to change notification settings - Fork1.9k
BoxMOT: Pluggable SOTA multi-object tracking modules modules for segmentation, object detection and pose estimation models
License
mikel-brostrom/boxmot
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
BoxMOT: Pluggable SOTA multi-object tracking modules for segmentation, object detection and pose estimation models
Pluggable Architecture
Easily swap in/out SOTA multi-object trackers.Universal Model Support
Integrate with any segmentation, object-detection and pose-estimation models that outputs bounding boxesBenchmark-Ready
Local evaluation pipelines for MOT17, MOT20, and DanceTrack ablation datasets with "official" ablation detectorsPerformance Modes
Reusable Detections & Embeddings
Save once, run evaluations with no redundant preprocessing lightning fast.
| Tracker | Status | HOTA↑ | MOTA↑ | IDF1↑ | FPS |
|---|---|---|---|---|---|
| boosttrack | ✅ | 69.253 | 75.914 | 83.206 | 25 |
| botsort | ✅ | 68.885 | 78.222 | 81.344 | 46 |
| hybridsort | ✅ | 68.216 | 76.382 | 81.164 | 25 |
| strongsort | ✅ | 68.05 | 76.185 | 80.763 | 17 |
| deepocsort | ✅ | 67.796 | 75.868 | 80.514 | 12 |
| bytetrack | ✅ | 67.68 | 78.039 | 79.157 | 1265 |
| ocsort | ✅ | 66.441 | 74.548 | 77.899 | 1483 |
NOTES: Evaluation was conducted on the second half of the MOT17 training set, as the validation set is not publicly available and the ablation detector was trained on the first half. We employedpre-generated detections and embeddings. Each tracker was configured using the default parameters from their official repositories.
Install theboxmot package, including all requirements, in a Python>=3.9 environment:
pip install boxmot
If you want to contribute to this package check how to contributehere
BoxMOT provides a unified CLIboxmot with the following subcommands:
Usage: boxmot COMMAND [ARGS]...Commands:eval Evaluate tracking performanceexport Export ReID models generate Generate detections and embeddings track Run tracking only tune Tune models via evolutionary algorithms
Seamlessly integrate BoxMOT directly into your Python MOT applications with your custom model.
importcv2importtorchimportnumpyasnpfrompathlibimportPathfromboxmotimportBoostTrackfromtorchvision.models.detectionimport (fasterrcnn_resnet50_fpn_v2,FasterRCNN_ResNet50_FPN_V2_WeightsasWeights)# Set devicedevice=torch.device('cuda'iftorch.cuda.is_available()else'cpu')# Load detector with pretrained weights and preprocessing transformsweights=Weights.DEFAULTdetector=fasterrcnn_resnet50_fpn_v2(weights=weights,box_score_thresh=0.5)detector.to(device).eval()transform=weights.transforms()# Initialize trackertracker=BoostTrack(reid_weights=Path('osnet_x0_25_msmt17.pt'),device=device,half=False)# Start video capturecap=cv2.VideoCapture(0)withtorch.inference_mode():whileTrue:success,frame=cap.read()ifnotsuccess:break# Convert frame to RGB and prepare for detectorrgb=cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)tensor=torch.from_numpy(rgb).permute(2,0,1).to(torch.uint8)input_tensor=transform(tensor).to(device)# Run detectionoutput=detector([input_tensor])[0]scores=output['scores'].cpu().numpy()keep=scores>=0.5# Prepare detections for trackingboxes=output['boxes'][keep].cpu().numpy()labels=output['labels'][keep].cpu().numpy()filtered_scores=scores[keep]detections=np.concatenate([boxes,filtered_scores[:,None],labels[:,None]],axis=1)# Update tracker and draw results# INPUT: M X (x, y, x, y, conf, cls)# OUTPUT: M X (x, y, x, y, id, conf, cls, ind)res=tracker.update(detections,frame)tracker.plot_results(frame,show_trajectories=True)# Show outputcv2.imshow('BoXMOT + Torchvision',frame)ifcv2.waitKey(1)&0xFF==ord('q'):break# Clean upcap.release()cv2.destroyAllWindows()
Tracking
$ boxmot track --yolo-model rf-detr-base.pt# bboxes only boxmot track --yolo-model yolox_s.pt# bboxes only boxmot track --yolo-model yolo12n.pt# bboxes only boxmot track --yolo-model yolo11n.pt# bboxes only boxmot track --yolo-model yolov10n.pt# bboxes only boxmot track --yolo-model yolov9c.pt# bboxes only boxmot track --yolo-model yolov8n.pt# bboxes only yolov8n-seg.pt# bboxes + segmentation masks yolov8n-pose.pt# bboxes + pose estimation
Tracking methods
$ boxmot track --tracking-method deepocsort strongsort ocsort bytetrack botsort boosttrack
Tracking sources
Tracking can be run on most video formats
$ boxmot track --source 0# webcam img.jpg# image vid.mp4# video path/# directory path/*.jpg# glob'https://youtu.be/Zgi9g1ksQHc'# YouTube'rtsp://example.com/media.mp4'# RTSP, RTMP, HTTP stream
Select ReID model
Some tracking methods combine appearance description and motion in the process of tracking. For those which use appearance, you can choose a ReID model based on your needs from thisReID model zoo. These model can be further optimized for you needs by thereid_export.py script
$ boxmot track --source 0 --reid-model lmbn_n_cuhk03_d.pt# lightweight osnet_x0_25_market1501.pt mobilenetv2_x1_4_msmt17.engine resnet50_msmt17.onnx osnet_x1_0_msmt17.pt clip_market1501.pt# heavy clip_vehicleid.pt ...
Filter tracked classes
By default the tracker tracks all MS COCO classes.
If you want to track a subset of the classes that you model predicts, add their corresponding index after the classes flag,
boxmot track --source 0 --yolo-model yolov8s.pt --classes 16 17# COCO yolov8 model. Track cats and dogs, onlyHere is a list of all the possible objects that a Yolov8 model trained on MS COCO can detect. Notice that the indexing for the classes in this repo starts at zero
Evaluation
Evaluate a combination of detector, tracking method and ReID model on standard MOT dataset or you custom one by
# reproduce MOT17 README results$ boxmoteval --yolo-model yolox_x_MOT17_ablation.pt --reid-model lmbn_n_duke.pt --tracking-method boosttrack --source MOT17-ablation --verbose# MOT20 results$ boxmoteval --yolo-model yolox_x_MOT20_ablation.pt --reid-model lmbn_n_duke.pt --tracking-method boosttrack --source MOT20-ablation --verbose# Dancetrack results$ boxmoteval --yolo-model yolox_x_dancetrack_ablation.pt --reid-model lmbn_n_duke.pt --tracking-method boosttrack --source dancetrack-ablation --verbose# metrics on custom dataset$ boxmoteval --yolo-model yolov8n.pt --reid-model osnet_x0_25_msmt17.pt --tracking-method deepocsort --source ./assets/MOT17-mini/train --verbose
add--gsi to your command for postprocessing the MOT results by gaussian smoothed interpolation. Detections and embeddings are stored for the selected YOLO and ReID model respectively. They can then be loaded into any tracking algorithm. Avoiding the overhead of repeatedly generating this data.
Evolution
We use a fast and elitist multiobjective genetic algorithm for tracker hyperparameter tuning. By default the objectives are: HOTA, MOTA, IDF1. Run it by
# saves dets and embs under ./runs/dets_n_embs separately for each selected yolo and reid model$ boxmot generate --source ./assets/MOT17-mini/train --yolo-model yolov8n.pt yolov8s.pt --reid-model weights/osnet_x0_25_msmt17.pt# evolve parameters for specified tracking method using the selected detections and embeddings generated in the previous step$ boxmot tune --yolo-model yolov8n.pt --reid-model osnet_x0_25_msmt17.pt --n-trials 9 --tracking-method botsort --source ./assets/MOT17-mini/train
The set of hyperparameters leading to the best HOTA result are written to the tracker's config file.
Export
We support ReID model export to ONNX, OpenVINO, TorchScript and TensorRT
# export to ONNX$ boxmotexport --weights weights/osnet_x0_25_msmt17.pt --include onnx --device cpu# export to OpenVINO$ boxmotexport --weights weights/osnet_x0_25_msmt17.pt --include openvino --device cpu# export to TensorRT with dynamic input$ boxmotexport --weights weights/osnet_x0_25_msmt17.pt --include engine --device 0 --dynamic
For BoxMOT bugs and feature requests please visitGitHub Issues.For business inquiries or professional support requests please send an email to:box-mot@outlook.com
About
BoxMOT: Pluggable SOTA multi-object tracking modules modules for segmentation, object detection and pose estimation models
Topics
Resources
License
Contributing
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Sponsor this project
Uh oh!
There was an error while loading.Please reload this page.
