Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Incorrect Results with FlexDecoding #233

Open
@zaptrem

Description

@zaptrem

@BoyuanFeng

Summary

TheKVCache.update() method returns the entire cache buffer including uninitialized (zero) positions, which causes significant numerical errors when using flex_attention. While this doesn't visibly affect discrete token generation (due to argmax), it:

  1. Produces incorrect attention values (101% relative error)
  2. Wastes computation on invalid cache positions
  3. Would cause severe issues for generation with real models esp. over longer contexts

Reproduction

importtorchfromtorch.nn.attention.flex_attentionimportflex_attention,create_block_maskdefcausal_mask(b,h,q_idx,kv_idx):returnq_idx>=kv_idx# Setupdevice=torch.device("cuda"iftorch.cuda.is_available()else"cpu")dtype=torch.bfloat16batch_size,num_heads,head_dim=1,32,128max_seq_length=2048current_position=100# Create query and KV cacheq=torch.randn(batch_size,num_heads,1,head_dim,device=device,dtype=dtype)k_cache=torch.zeros(batch_size,num_heads,max_seq_length,head_dim,device=device,dtype=dtype)v_cache=torch.zeros(batch_size,num_heads,max_seq_length,head_dim,device=device,dtype=dtype)# Fill only valid positions (0-99)k_cache[:, :, :current_position]=torch.randn(batch_size,num_heads,current_position,head_dim,device=device,dtype=dtype)v_cache[:, :, :current_position]=torch.randn(batch_size,num_heads,current_position,head_dim,device=device,dtype=dtype)# Test 1: Current GPT-Fast approach (full cache)defoffset_causal_mask(b,h,q,kv):return (q+current_position-1)>=kvmask_full=create_block_mask(offset_causal_mask,B=batch_size,H=None,Q_LEN=1,KV_LEN=max_seq_length,device=device)mask_full.seq_lengths= (1,max_seq_length)# As done in generate.pyoutput_full=flex_attention(q,k_cache,v_cache,block_mask=mask_full)# Test 2: Correct approach (sliced cache)k_sliced=k_cache[:, :, :current_position]v_sliced=v_cache[:, :, :current_position]mask_sliced=create_block_mask(causal_mask,B=batch_size,H=None,Q_LEN=1,KV_LEN=current_position,device=device)mask_sliced.seq_lengths= (1,current_position)output_sliced=flex_attention(q,k_sliced,v_sliced,block_mask=mask_sliced)# Compare resultserror= (output_full-output_sliced).abs()print(f"Mean error:{error.mean().item():.6f}")print(f"Relative error:{(error.mean()/output_sliced.abs().mean()*100).item():.1f}%")print(f"Full cache std:{output_full.std().item():.6f}")print(f"Sliced cache std:{output_sliced.std().item():.6f}")

Results

Mean error: 0.816406Relative error: 101.0%Full cache std: 0.152802Sliced cache std: 1.016770

The full cache approach produces completely different results with 101% relative error!

While slicing the cache fixes the issue, now we have shapes that change every step which is way slower. It probably breaks the flash decoding kernel assumptions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions


      [8]ページ先頭

      ©2009-2025 Movatter.jp