- Notifications
You must be signed in to change notification settings - Fork566
Open
Description
I tried the following and seems it breaks right now
> python quantize.py --checkpoint_path checkpoints/$MODEL_REPO/model.pth --mode int4 --groupsize 64Loading model ...Quantizing model weights for int4 weight-only affine per-channel groupwise quantizationlinear: layers.0.attention.wqkv, in=4096, out=6144Traceback (most recent call last): File "/data/users/jerryzh/gpt-fast/quantize.py", line 622, in <module> quantize(args.checkpoint_path, args.mode, args.groupsize, args.calibration_tasks, args.calibration_limit, args.calibration_seq_length, args.pad_calibration_inputs, args.percdamp, args.blocksize, args.label) File "/data/users/jerryzh/gpt-fast/quantize.py", line 569, in quantize quantized_state_dict = quant_handler.create_quantized_state_dict() File "/home/jerryzh/.conda/envs/sglang/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context return func(*args, **kwargs) File "/data/users/jerryzh/gpt-fast/quantize.py", line 433, in create_quantized_state_dict weight_int4pack, scales_and_zeros = prepare_int4_weight_and_scales_and_zeros( File "/data/users/jerryzh/gpt-fast/quantize.py", line 363, in prepare_int4_weight_and_scales_and_zeros weight_int4pack = torch.ops.aten._convert_weight_to_int4pack(weight_int32, inner_k_tiles) File "/home/jerryzh/.conda/envs/sglang/lib/python3.10/site-packages/torch/_ops.py", line 1123, in __call__ return self._op(*args, **(kwargs or {}))RuntimeError: Expected in.dtype() == at::kByte to be true, but got false. (Could this error message be improved? If so, please report an enhancement request to PyTorch.)it's probably because of@yanbing-j's recent refactors, but I'm not sure if we want to migrate to use torchao's quant at some point so not sure if it's worth fixing now.
Metadata
Metadata
Assignees
Labels
No labels