This repository was archived by the owner on Sep 26, 2022. It is now read-only.
- Notifications
You must be signed in to change notification settings - Fork1
Example codes for Japanese Realistic Textual Entailment Corpus
License
NotificationsYou must be signed in to change notification settings
megagonlabs/jrte-corpus_example
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
- train.py is an example code to exploitJapanese Realistic Textual Entailment Corpus.
- ブログ記事: じゃらんnetに投稿された宿クチコミを用いた感情極性分析・含意関係認識の一例
$git clone https://github.com/megagonlabs/jrte-corpus$poetry install --no-root
$poetry run python3 ./train.py -i ./jrte-corpus/data/pn.tsv -o ./model-pn --task pn$poetry run python3 ./train.py -i ./jrte-corpus/data/rhr.tsv -o ./model-rhr --task rhr$poetry run python3 ./train.py -i'./jrte-corpus/data/rte.*.tsv' -o ./model-rte --task rte
$poetry run transformers-cli serve --task sentiment-analysis --model ./model-pn --port 8900$curl -X POST -H"Content-Type: application/json""http://localhost:8900/forward" -d'{"inputs":["ご飯が美味しいです。", "3人で行きました。" , "部屋は狭かったです。"] }'{"output":[{"label":"pos","score":0.8015708923339844},{"label":"neu","score":0.47732535004615784},{"label":"neg","score":0.42699119448661804}]}$poetry run transformers-cli serve --task sentiment-analysis --model ./model-rhr --port 8901$curl -X POST -H"Content-Type: application/json""http://localhost:8901/forward" -d'{"inputs":["ご飯が美味しいです。", "3人で行きました。"] }'{"output":[{"label":"yes","score":0.9653761386871338},{"label":"no","score":0.8748807907104492}]}$poetry run transformers-cli serve --task sentiment-analysis --model ./model-rte --port 8902$curl -X POST -H"Content-Type: application/json""http://localhost:8902/forward" -d'{"inputs":[["風呂がきれいです。", "食事が美味しいです" ] , [ "暑いです。", "とても暑かった"]] }'{"output":[{"label":"NE","score":0.9982748627662659},{"label":"E","score":0.9790723323822021}]
$poetry run python3 ./train.py --evaluate -i ./jrte-corpus/data/pn.tsv --base ./model-pn --task pn -o ./model-pn/evaluate_output.txt$awk'{if($1==$2){ok+=1} } END{ print(ok, NR, ok/NR) }' ./model-pn/evaluate_output.txt463 553 0.837251$poetry run python3 ./train.py --evaluate -i ./jrte-corpus/data/rhr.tsv --base ./model-rhr --task rhr -o ./model-rhr/evaluate_output.txt$awk'{if($1==$2){ok+=1} } END{ print(ok, NR, ok/NR) }' ./model-rhr/evaluate_output.txt490 553 0.886076$poetry run python3 ./train.py --evaluate -i'./jrte-corpus/data/rte.*.tsv' --base ./model-rte --task rte -o ./model-rte/evaluate_output.txt$awk'{if($1==$2){ok+=1} } END{ print(ok, NR, ok/NR) }' ./model-rte/evaluate_output.txt4932 5529 0.892024
$echo -e'飯が美味しいです。\n3人で行きました。\n部屋は狭かったです。'| poetry run python3 ./train.py --predict --base ./model-pn --task pnpos [0.01976804807782173, 0.9660832285881042, 0.014148728922009468]neu [0.7618894577026367, 0.18750707805156708, 0.050603508949279785]neg [0.08151481300592422, 0.07906448841094971, 0.8394206762313843]$echo -e'ご飯が美味しいです。\n3人で行きました。'| poetry run python3 ./train.py --predict --base ./model-rhr --task rhryes [0.020516179502010345, 0.9794838428497314]no [0.9730492830276489, 0.0269507747143507]$echo -e'風呂がきれいです。\t食事が美味しいです\n暑いです。\tとても暑かった'| poetry run python3 ./train.py --predict --base ./model-rte --task rte --batch_size 256NE [0.9980229139328003, 0.001977113541215658]E [0.02364685945212841, 0.976353108882904]
About
Example codes for Japanese Realistic Textual Entailment Corpus
Resources
License
Uh oh!
There was an error while loading.Please reload this page.