Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Backport PR #29406 on branch v3.10.x (DOC: Update scales overview)#29420

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to ourterms of service andprivacy statement. We’ll occasionally send you account related emails.

Already on GitHub?Sign in to your account

Merged
Show file tree
Hide file tree
Changes fromall commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletionsdoc/sphinxext/gallery_order.py
View file
Open in desktop
Original file line numberDiff line numberDiff line change
Expand Up@@ -86,6 +86,8 @@ def __call__(self, item):
"color_demo",
# pies
"pie_features", "pie_demo2",
# scales
"scales", # Scales overview

# **Plot Types
# Basic
Expand Down
100 changes: 29 additions & 71 deletionsgalleries/examples/scales/scales.py
View file
Open in desktop
Original file line numberDiff line numberDiff line change
Expand Up@@ -5,56 +5,42 @@

Illustrate the scale transformations applied to axes, e.g. log, symlog, logit.

The last two examples are examples ofusing the ``'function'`` scale by
supplying forward and inverse functions for the scale transformation.
See `matplotlib.scale` for a full list ofbuilt-in scales, and
:doc:`/gallery/scales/custom_scale` for how to create your own scale.
"""

import matplotlib.pyplot as plt
import numpy as np

from matplotlib.ticker import FixedLocator, NullFormatter
x = np.arange(400)
y = np.linspace(0.002, 1, 400)

# Fixing random state for reproducibility
np.random.seed(19680801)

# make up some data in the interval ]0, 1[
y = np.random.normal(loc=0.5, scale=0.4, size=1000)
y = y[(y > 0) & (y < 1)]
y.sort()
x = np.arange(len(y))

# plot with various axes scales
fig, axs = plt.subplots(3, 2, figsize=(6, 8), layout='constrained')

# linear
ax = axs[0, 0]
ax.plot(x, y)
ax.set_yscale('linear')
ax.set_title('linear')
ax.grid(True)

axs[0, 0].plot(x, y)
axs[0, 0].set_yscale('linear')
axs[0, 0].set_title('linear')
axs[0, 0].grid(True)

# log
ax = axs[0, 1]
ax.plot(x, y)
ax.set_yscale('log')
ax.set_title('log')
ax.grid(True)
axs[0, 1].plot(x, y)
axs[0, 1].set_yscale('log')
axs[0, 1].set_title('log')
axs[0, 1].grid(True)

axs[1, 0].plot(x, y - y.mean())
axs[1, 0].set_yscale('symlog', linthresh=0.02)
axs[1, 0].set_title('symlog')
axs[1, 0].grid(True)

# symmetric log
ax = axs[1, 1]
ax.plot(x, y - y.mean())
ax.set_yscale('symlog', linthresh=0.02)
ax.set_title('symlog')
ax.grid(True)
axs[1, 1].plot(x, y)
axs[1, 1].set_yscale('logit')
axs[1, 1].set_title('logit')
axs[1, 1].grid(True)

# logit
ax = axs[1, 0]
ax.plot(x, y)
ax.set_yscale('logit')
ax.set_title('logit')
ax.grid(True)
axs[2, 0].plot(x, y - y.mean())
axs[2, 0].set_yscale('asinh', linear_width=0.01)
axs[2, 0].set_title('asinh')
axs[2, 0].grid(True)


# Function x**(1/2)
Expand All@@ -66,38 +52,11 @@ def inverse(x):
return x**2


ax = axs[2, 0]
ax.plot(x, y)
ax.set_yscale('function', functions=(forward, inverse))
ax.set_title('function: $x^{1/2}$')
ax.grid(True)
ax.yaxis.set_major_locator(FixedLocator(np.arange(0, 1, 0.2)**2))
ax.yaxis.set_major_locator(FixedLocator(np.arange(0, 1, 0.2)))


# Function Mercator transform
def forward(a):
a = np.deg2rad(a)
return np.rad2deg(np.log(np.abs(np.tan(a) + 1.0 / np.cos(a))))


def inverse(a):
a = np.deg2rad(a)
return np.rad2deg(np.arctan(np.sinh(a)))

ax = axs[2, 1]

t = np.arange(0, 170.0, 0.1)
s = t / 2.

ax.plot(t, s, '-', lw=2)

ax.set_yscale('function', functions=(forward, inverse))
ax.set_title('function: Mercator')
ax.grid(True)
ax.set_xlim([0, 180])
ax.yaxis.set_minor_formatter(NullFormatter())
ax.yaxis.set_major_locator(FixedLocator(np.arange(0, 90, 10)))
axs[2, 1].plot(x, y)
axs[2, 1].set_yscale('function', functions=(forward, inverse))
axs[2, 1].set_title('function: $x^{1/2}$')
axs[2, 1].grid(True)
axs[2, 1].set_yticks(np.arange(0, 1.2, 0.2))

plt.show()

Expand All@@ -110,7 +69,6 @@ def inverse(a):
#
# - `matplotlib.axes.Axes.set_xscale`
# - `matplotlib.axes.Axes.set_yscale`
# - `matplotlib.axis.Axis.set_major_locator`
# - `matplotlib.scale.LinearScale`
# - `matplotlib.scale.LogScale`
# - `matplotlib.scale.SymmetricalLogScale`
Expand Down
Loading

[8]ページ先頭

©2009-2025 Movatter.jp